ShanghaiTech University Knowledge Management System
3DTeethSeg'22: 3D Teeth Scan Segmentation and Labeling Challenge | |
Ben-Hamadou, Achraf1,2; Smaoui, Oussama2; Rekik, Ahmed1; Pujades, Sergi3; Boyer, Edmond3; Lim, Hoyeon4; Kim, Minchang4; Lee, Minkyung4; Chung, Minyoung5; Shin, Yeong-Gil4; Leclercq, Mathieu7; Cevidanes, Lucia6; Prieto, Juan Carlos7; Zhuang, Shaojie8; Wei, Guangshun8; Cui, Zhiming9; Zhou, Yuanfeng8; Dascalu, Tudor10; Ibragimov, Bulat10; Yong, Tae-Hoon11; Ahn, Hong-Gi11; Kim, Wan11; Han, Jae-Hwan11; Choi, Byungsun11; Nistelrooij, Niels van12,13,15; Kempers, Steven12,14; Vinayahalingam, Shankeeth12,14; Strippoli, Julien2; Thollot, Aurelien2; Setbon, Hugo2; Trosset, Cyril2; Ladroit, Edouard2
| |
2023-05-29 | |
状态 | 已发表 |
摘要 | Teeth localization, segmentation, and labeling from intra-oral 3D scans are essential tasks in modern dentistry to enhance dental diagnostics, treatment planning, and population-based studies on oral health. However, developing automated algorithms for teeth analysis presents significant challenges due to variations in dental anatomy, imaging protocols, and limited availability of publicly accessible data. To address these challenges, the 3DTeethSeg’22 challenge was organized in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2022, with a call for algorithms tackling teeth localization, segmentation, and labeling from intraoral 3D scans. A dataset comprising a total of 1800 scans from 900 patients was prepared, and each tooth was individually annotated by a human-machine hybrid algorithm. A total of 6 algorithms were evaluated on this dataset. In this study, we present the evaluation results of the 3DTeethSeg’22 challenge. |
关键词 | Teeth localization 3D Teeth segmentation 3D segmentation 3D object detection 3D intraoral scans dentistry |
DOI | arXiv:2305.18277 |
相关网址 | 查看原文 |
出处 | Arxiv |
WOS记录号 | PPRN:72757127 |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Software Engineering |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348332 |
专题 | 上海科技大学 |
作者单位 | 1.Technopole Sfax, Ctr Rech Numer Sfax, Artificial Intelligence & Networks, Lab Signals, Sfax 3021, Tunisia 2.Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark 3.Osstem Implant Co Ltd, Seoul, South Korea 4.Radboud Univ Nijmegen Med Ctr, Dept Oral & Maxillofacial Surg, POB 9101, NL-6500 HB Nijmegen, Netherlands 5.Radboud Univ, Dept Comp Sci, Nijmegen, Netherlands 6.Radboud Univ, Dept Comp Sci, Nijmegen, Netherlands 7.Radboud Univ, Dept Artificial Intelligence, Nijmegen, Netherlands 8.Udini, 37 BD Aristide Briand, F-13100 Aix, France 9.Univ Grenoble Alpes, Inria, CNRS, Grenoble INP,LJK, Grenoble, France 10.Seoul Natl Univ, Dept Comp Sci & Engn, Seoul, South Korea 11.Soongsil Univ, Sch Software, Seoul, South Korea 12.Univ Michigan Ann Arbor, Ann Arbor, MI 48109, USA 13.Univ North Carolina Chapel Hill, Chapel Hill, NC, USA 14.Shandong Univ, Jinan, Peoples R China 15.Shanghai Tech Univ, Jinan, Peoples R China |
推荐引用方式 GB/T 7714 | Ben-Hamadou, Achraf,Smaoui, Oussama,Rekik, Ahmed,et al. 3DTeethSeg'22: 3D Teeth Scan Segmentation and Labeling Challenge. 2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。