| |||||||
ShanghaiTech University Knowledge Management System
Fast, accurate and robust sparse-view CT reconstruction via residual-guided Golub-Kahan iterative reconstruction technique (RGIRT) | |
2023-02-28 | |
状态 | 已发表 |
摘要 | Reduction of projection views in X-ray computed tomography (CT) can protect patients from over exposure to ionizing radiation, thus is highly attractive for clinical applications. However, image reconstruction for sparse-view CT which aims to produce decent images from few projection views remains a challenge. To address this, we propose a Residual-guided Golub-Kahan Iterative Reconstruction Technique (RGIRT). RGIRT utilizes an inner-outer dual iteration framework, with a flexible least square QR (FLSQR) algorithm implemented in the inner iteration and a restarted iterative scheme applied in the outer iteration. The inner FLSQR employs a flexible Golub-Kahan (FGK) bidiagonalization method to reduce the dimension of the inverse problem, and a weighted generalized cross-validation (WGCV) method to adaptively estimate the regularization hyper-parameter. The inner iteration efficiently yields the intermediate reconstruction result, while the outer iteration minimizes the residual and refines the solution by using the result obtained from the inner iteration. Reconstruction performance of RGIRT is evaluated and compared to other reference methods (FBPConvNet, SART-TV, and FLSQR) using realistic mouse cardiac micro-CT data. Experiment results demonstrate the merits of RGIRT for sparse-view CT reconstruction in high accuracy, efficient computation, and stable convergence. |
关键词 | Sparse-view CT image reconstruction inverse problem Golub-Kahan process ℓ1 regularization |
DOI | 10.1101/2023.02.24.23286409 |
相关网址 | 查看原文 |
出处 | medRxiv |
WOS记录号 | PPRN:40912142 |
WOS类目 | Radiology, Nuclear Medicine & Medical Imaging |
资助项目 | National Natural Science Foundation of China[ |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348305 |
专题 | 信息科学与技术学院 数学科学研究所 信息科学与技术学院_硕士生 生物医学工程学院 信息科学与技术学院_PI研究组_任无畏组 数学科学研究所_PI研究组(P)_姜嘉骅组 生物医学工程学院_PI研究组_曹国华组 |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China 3.United Imaging Healthcare Co Ltd, Shanghai 201807, Peoples R China 4.ShanghaiTech Univ, Inst Math Sci, Shanghai 201210, Peoples R China 5.Univ Birmingham, Sch Math, Edgbaston B15 2QN, England |
推荐引用方式 GB/T 7714 | Zhang, Jianru,Wang, Zhe,Cao, Tuoyu,et al. Fast, accurate and robust sparse-view CT reconstruction via residual-guided Golub-Kahan iterative reconstruction technique (RGIRT). 2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。