HybridCap: Inertia-aid Monocular Capture of Challenging Human Motions
2023-03-06
会议录名称ARXIV
ISSN2159-5399
发表状态已发表
DOIarXiv:2203.09287
摘要

Monocular 3D motion capture (mocap) is beneficial to many applications. The use of a single camera, however, often fails to handle occlusions of different body parts and hence it is limited to capture relatively simple movements. We present a light-weight, hybrid mocap technique called HybridCap that augments the camera with only 4 Inertial Measurement Units (IMUs) in a learning-and-optimization framework. We first employ a weakly-supervised and hierarchical motion inference module based on cooperative Gated Recurrent Unit (GRU) blocks that serve as limb, body and root trackers as well as an inverse kinematics solver. Our network effectively narrows the search space of plausible motions via coarse-to-fine pose estimation and manages to tackle challenging movements with high efficiency. We further develop a hybrid optimization scheme that combines inertial feedback and visual cues to improve tracking accuracy. Extensive experiments on various datasets demonstrate HybridCap can robustly handle challenging movements ranging from fitness actions to Latin dance. It also achieves real-time performance up to 60 fps with state-of-the-art accuracy.

会议名称37th AAAI Conference on Artificial Intelligence (AAAI) / 35th Conference on Innovative Applications of Artificial Intelligence / 13th Symposium on Educational Advances in Artificial Intelligence
出版地2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
会议地点null,Washington,DC
会议日期FEB 07-14, 2023
URL查看原文
收录类别CPCI-S
语种英语
资助项目Shanghai YangFan Program[
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号PPRN:43610013
出版者ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE
EISSN2374-3468
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348292
专题信息科学与技术学院
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_许岚组
信息科学与技术学院_PI研究组_汪婧雅组
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.Shanghai Frontiers Sci Ctr Human Centered Artificial Intelligence, Shanghai, Peoples R China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Liang, Han,He, Yannan,Zhao, Chengfeng,et al. HybridCap: Inertia-aid Monocular Capture of Challenging Human Motions[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liang, Han]的文章
[He, Yannan]的文章
[Zhao, Chengfeng]的文章
百度学术
百度学术中相似的文章
[Liang, Han]的文章
[He, Yannan]的文章
[Zhao, Chengfeng]的文章
必应学术
必应学术中相似的文章
[Liang, Han]的文章
[He, Yannan]的文章
[Zhao, Chengfeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。