ShanghaiTech University Knowledge Management System
HybridCap: Inertia-aid Monocular Capture of Challenging Human Motions | |
2023-03-06 | |
会议录名称 | ARXIV |
ISSN | 2159-5399 |
发表状态 | 已发表 |
DOI | arXiv:2203.09287 |
摘要 | Monocular 3D motion capture (mocap) is beneficial to many applications. The use of a single camera, however, often fails to handle occlusions of different body parts and hence it is limited to capture relatively simple movements. We present a light-weight, hybrid mocap technique called HybridCap that augments the camera with only 4 Inertial Measurement Units (IMUs) in a learning-and-optimization framework. We first employ a weakly-supervised and hierarchical motion inference module based on cooperative Gated Recurrent Unit (GRU) blocks that serve as limb, body and root trackers as well as an inverse kinematics solver. Our network effectively narrows the search space of plausible motions via coarse-to-fine pose estimation and manages to tackle challenging movements with high efficiency. We further develop a hybrid optimization scheme that combines inertial feedback and visual cues to improve tracking accuracy. Extensive experiments on various datasets demonstrate HybridCap can robustly handle challenging movements ranging from fitness actions to Latin dance. It also achieves real-time performance up to 60 fps with state-of-the-art accuracy. |
会议名称 | 37th AAAI Conference on Artificial Intelligence (AAAI) / 35th Conference on Innovative Applications of Artificial Intelligence / 13th Symposium on Educational Advances in Artificial Intelligence |
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA |
会议地点 | null,Washington,DC |
会议日期 | FEB 07-14, 2023 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
资助项目 | Shanghai YangFan Program[ |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Software Engineering |
WOS记录号 | PPRN:43610013 |
出版者 | ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE |
EISSN | 2374-3468 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348292 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_许岚组 信息科学与技术学院_PI研究组_汪婧雅组 |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.Shanghai Frontiers Sci Ctr Human Centered Artificial Intelligence, Shanghai, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Liang, Han,He, Yannan,Zhao, Chengfeng,et al. HybridCap: Inertia-aid Monocular Capture of Challenging Human Motions[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。