EquiScore: A generic protein-ligand interaction scoring method integrating physical prior knowledge with data augmentation modeling
2023-06-22
状态已发表
摘要

Developing robust methods for evaluating protein-ligand interactions has been a long-standing problem. Here, we propose a novel approach called EquiScore, which utilizes an equivariant heterogeneous graph neural network to integrate physical prior knowledge and characterize protein-ligand interactions in equivariant geometric space. To improve generalization performance, we constructed a dataset called PDBscreen and designed multiple data augmentation strategies suitable for training scoring methods. We also analyzed potential risks of data leakage in commonly used data-driven modeling processes and proposed a more stringent redundancy removal scheme to alleviate this problem. On two large external test sets, EquiScore outperformed 21 methods across a range of screening performance metrics, and this performance was insensitive to binding pose generation methods. EquiScore also showed good performance on the activity ranking task of a series of structural analogs, indicating its potential to guide lead compound optimization. Finally, we investigated different levels of interpretability of EquiScore, which may provide more insights into structure-based drug design.

DOI10.1101/2023.06.18.545464
相关网址查看原文
出处bioRxiv
WOS记录号PPRN:73454428
WOS类目Computer Science, Interdisciplinary Applications
资助项目National Natural Science Foundation of China[
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348145
专题物质科学与技术学院
物质科学与技术学院_博士生
作者单位
1.Zhejiang Univ, Innovat Inst Artificial Intelligence Med, Coll Pharmaceut Sci, Hangzhou 310058, Zhejiang, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Mat Med, Drug Discovery & Design Ctr, State Key Lab Drug Res, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China
3.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
4.UCAS, Hangzhou Inst Adv Study, Sch Pharmaceut Sci & Technol, Hangzhou 330106, Peoples R China
5.Univ Sci & Technol China, Div Life Sci & Med, Hefei 230026, Anhui, Peoples R China
6.Shanghai Tech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
7.Lingang Lab, Shanghai 200031, Peoples R China
8.Nanjing Univ Chinese Med, Sch Chinese Mat Med, 138 Kianlin Rd, Nanjing 210023, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Cao, Duanhua,Chen, Geng,Jiang, Jiaxin,et al. EquiScore: A generic protein-ligand interaction scoring method integrating physical prior knowledge with data augmentation modeling. 2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cao, Duanhua]的文章
[Chen, Geng]的文章
[Jiang, Jiaxin]的文章
百度学术
百度学术中相似的文章
[Cao, Duanhua]的文章
[Chen, Geng]的文章
[Jiang, Jiaxin]的文章
必应学术
必应学术中相似的文章
[Cao, Duanhua]的文章
[Chen, Geng]的文章
[Jiang, Jiaxin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。