消息
×
loading..
SeqGPT: An Out-of-the-Box Large Language Model for Open Domain Sequence Understanding
2024
会议录名称THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 17
ISSN2159-5399
发表状态已发表
摘要

Large language models (LLMs) have shown impressive abilities for open-domain NLP tasks. However, LLMs are sometimes too footloose for natural language understanding (NLU) tasks which always have restricted output and input format. Their performances on NLU tasks are highly related to prompts or demonstrations and are shown to be poor at performing several representative NLU tasks, such as event extraction and entity typing. To this end, we present SeqGPT, a bilingual (i.e., English and Chinese) open-source autoregressive model specially enhanced for open-domain natural language understanding. We express all NLU tasks with two atomic tasks, which define fixed instructions to restrict the input and output format but still "open" for arbitrarily varied label sets. The model is first instruction-tuned with extremely fine-grained labeled data synthesized by ChatGPT and then further fine-tuned by 233 different atomic tasks from 152 datasets across various domains. The experimental results show that SeqGPT has decent classification and extraction ability, and is capable of performing language understanding tasks on unseen domains. We also conduct empirical studies on the scaling of data and model size as well as on the transfer across tasks. Our models are accessible at https://github.com/Alibaba-NLP/SeqGPT.

会议名称38th AAAI Conference on Artificial Intelligence (AAAI) / 36th Conference on Innovative Applications of Artificial Intelligence / 14th Symposium on Educational Advances in Artificial Intelligence
出版地2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
会议地点null,Vancouver,CANADA
会议日期FEB 20-27, 2024
URL查看原文
收录类别CPCI-S
语种英语
资助项目National Natural Science Foundation of China[62276154] ; Natural Science Foundation of Guangdong Province[2023A1515012914] ; Basic Research Fund of Shenzhen City[
WOS研究方向Computer Science ; Education & Educational Research
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods ; Education, Scientific Disciplines
WOS记录号WOS:001239407300107
出版者ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE
EISSN2374-3468
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348133
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_屠可伟组
信息科学与技术学院_硕士生
共同第一作者Jiang, Chengyue; Lou, Chao; Huang, Shen
通讯作者Jiang, Yong
作者单位
1.Tsinghua Univ, Beijing, Peoples R China
2.ShanghaiTech Univ, Shanghai, Peoples R China
3.Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China
4.Alibaba Grp, DAMO Acad, Hangzhou, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Yu, Tianyu,Jiang, Chengyue,Lou, Chao,et al. SeqGPT: An Out-of-the-Box Large Language Model for Open Domain Sequence Understanding[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yu, Tianyu]的文章
[Jiang, Chengyue]的文章
[Lou, Chao]的文章
百度学术
百度学术中相似的文章
[Yu, Tianyu]的文章
[Jiang, Chengyue]的文章
[Lou, Chao]的文章
必应学术
必应学术中相似的文章
[Yu, Tianyu]的文章
[Jiang, Chengyue]的文章
[Lou, Chao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。