EdaDet: Open-Vocabulary Object Detection Using Early Dense Alignment
2023-09-03
会议录名称2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)
ISSN1550-5499
发表状态已发表
DOI10.1109/ICCV51070.2023.01441
摘要

Vision-language models such as CLIP have boosted the performance of open-vocabulary object detection, where the detector is trained on base categories but required to detect novel categories. Existing methods leverage CLIP's strong zero-shot recognition ability to align object-level embeddings with textual embeddings of categories. However, we observe that using CLIP for object-level alignment results in overfitting to base categories, i.e., novel categories most similar to base categories have particularly poor performance as they are recognized as similar base categories. In this paper, we first identify that the loss of critical fine-grained local image semantics hinders existing methods from attaining strong base-to-novel generalization. Then, we propose Early Dense Alignment (EDA) to bridge the gap between generalizable local semantics and object-level prediction. In EDA, we use object-level supervision to learn the dense-level rather than object-level alignment to maintain the local fine-grained semantics. Extensive experiments demonstrate our superior performance to competing approaches under the same strict setting and without using external training resources, i.e., improving the +8.4% novel box AP50 on COCO and +3.9% rare mask AP on LVIS.

会议地点Paris, France
会议日期1-6 Oct. 2023
URL查看原文
资助项目National Natural Science Foundation of China[
WOS类目Computer Science, Software Engineering
WOS记录号PPRN:84763295
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348024
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_杨思蓓组
通讯作者Yang, Sibei
作者单位
ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Shi, Cheng,Yang, Sibei. EdaDet: Open-Vocabulary Object Detection Using Early Dense Alignment[C],2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shi, Cheng]的文章
[Yang, Sibei]的文章
百度学术
百度学术中相似的文章
[Shi, Cheng]的文章
[Yang, Sibei]的文章
必应学术
必应学术中相似的文章
[Shi, Cheng]的文章
[Yang, Sibei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。