ZoomTrack: Target-aware Non-uniform Resizing for Efficient Visual Tracking
2023-10-16
会议录名称ARXIV
ISSN1049-5258
卷号36
页码50959-50977
发表状态已发表
DOIarXiv:2310.10071
摘要

Recently, the transformer has enabled the speed-oriented trackers to approach state-of-the-art (SOTA) performance with high-speed thanks to the smaller input size or the lighter feature extraction backbone, though they still substantially lag behind their corresponding performance-oriented versions. In this paper, we demonstrate that it is possible to narrow or even close this gap while achieving high tracking speed based on the smaller input size. To this end, we non-uniformly resize the cropped image to have a smaller input size while the resolution of the area where the target is more likely to appear is higher and vice versa. This enables us to solve the dilemma of attending to a larger visual field while retaining more raw information for the target despite a smaller input size. Our formulation for the non-uniform resizing can be efficiently solved through quadratic programming (QP) and naturally integrated into most of the crop-based local trackers. Comprehensive experiments on five challenging datasets based on two kinds of transformer trackers, ie, OSTrack and TransT, demonstrate consistent improvements over them. In particular, applying our method to the speed-oriented version of OSTrack even outperforms its performance-oriented counterpart by 0.6% AUC on TNL2K, while running 50% faster and saving over 55% MACs.

关键词Data handling Quadratic programming Features extraction High Speed Input size Non-uniform Performance-oriented Small inputs State-of-the-art performance Tracking speed Visual fields Visual Tracking
会议名称37th Conference on Neural Information Processing Systems (NeurIPS)
出版地10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA
会议地点null,New Orleans,LA
会议日期DEC 10-16, 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Key R&D Program of China[
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号PPRN:85661731
出版者NEURAL INFORMATION PROCESSING SYSTEMS (NIPS)
EI入藏号20244117161795
EI分类号1106.2 ; 1201.7 ; 1201.9
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/348006
专题信息科学与技术学院
通讯作者Gao, Jin; Wang, Gang
作者单位
1.State Key Lab Multimodal Artificial Intelligence Syst MAIS, CASIA, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
4.Beijing Inst Basic Med Sci, Beijing, Peoples R China
5.People AI Inc, Redwood City, CA, USA
推荐引用方式
GB/T 7714
Kou, Yutong,Gao, Jin,Li, Bing,et al. ZoomTrack: Target-aware Non-uniform Resizing for Efficient Visual Tracking[C]. 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA:NEURAL INFORMATION PROCESSING SYSTEMS (NIPS),2023:50959-50977.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Kou, Yutong]的文章
[Gao, Jin]的文章
[Li, Bing]的文章
百度学术
百度学术中相似的文章
[Kou, Yutong]的文章
[Gao, Jin]的文章
[Li, Bing]的文章
必应学术
必应学术中相似的文章
[Kou, Yutong]的文章
[Gao, Jin]的文章
[Li, Bing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。