消息
×
loading..
Tissue Segmentation of Thick-Slice Fetal Brain MR Scans With Guidance From High-Quality Isotropic Volumes
2024-04
发表期刊IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING (IF:4.4[JCR-2023],4.8[5-Year])
ISSN1558-2531
EISSN1558-2531
卷号71期号:4页码:1404-1415
发表状态已发表
DOI10.1109/TBME.2023.3337338
摘要

Accurate tissue segmentation of thick-slice fetal brain magnetic resonance (MR) scans is crucial for both reconstruction of isotropic brain MR volumes and the quantification of fetal brain development. However, this task is challenging due to the use of thick-slice scans in clinically-acquired fetal brain data. To address this issue, we propose to leverage high-quality isotropic fetal brain MR volumes (and also their corresponding annotations) as guidance for segmentation of thick-slice scans. Due to existence of significant domain gap between high-quality isotropic volume (i.e., source data) and thick-slice scans (i.e., target data), we employ a domain adaptation technique to achieve the associated knowledge transfer (from high-quality 'source' volumes to thick-slice 'target' scans). Specifically, we first register the available high-quality isotropic fetal brain MR volumes across different gestational weeks to construct longitudinally-complete source data. To capture domain-invariant information, we then perform Fourier decomposition to extract image content and style codes. Finally, we propose a novel Cycle-Consistent Domain Adaptation Network (C2DA-Net) to efficiently transfer the knowledge learned from high-quality isotropic volumes for accurate tissue segmentation of thick-slice scans. Our C2DA-Net can fully utilize a small set of annotated isotropic volumes to guide tissue segmentation on unannotated thick-slice scans. Extensive experiments on a large-scale dataset of 372 clinically acquired thick-slice MR scans demonstrate that our C2DA-Net achieves much better performance than cutting-edge methods quantitatively and qualitatively. © 1964-2012 IEEE.

关键词Brain tissue segmentation cycle-consistency fetal MRI unsupervised domain adaptation
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20235115236613
EI主题词Magnetic resonance
EI分类号461.1 Biomedical Engineering ; 461.2 Biological Materials and Tissue Engineering ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.2 Data Processing and Image Processing ; 746 Imaging Techniques
原始文献类型Journal article (JA)
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/347968
专题生物医学工程学院_PI研究组_崔智铭组
信息科学与技术学院_博士生
生物医学工程学院_PI研究组_沈定刚组
通讯作者Chen, Geng; Shen, Dinggang
作者单位
1.School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China;
2.Academy for Eng. & Tech. Fudan University, Shanghai, China;
3.Department of Radiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China;
4.National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Huang, Shijie,Zhang, Xukun,Cui, Zhiming,et al. Tissue Segmentation of Thick-Slice Fetal Brain MR Scans With Guidance From High-Quality Isotropic Volumes[J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,2024,71(4):1404-1415.
APA Huang, Shijie,Zhang, Xukun,Cui, Zhiming,Zhang, He,Chen, Geng,&Shen, Dinggang.(2024).Tissue Segmentation of Thick-Slice Fetal Brain MR Scans With Guidance From High-Quality Isotropic Volumes.IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,71(4),1404-1415.
MLA Huang, Shijie,et al."Tissue Segmentation of Thick-Slice Fetal Brain MR Scans With Guidance From High-Quality Isotropic Volumes".IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 71.4(2024):1404-1415.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Huang, Shijie]的文章
[Zhang, Xukun]的文章
[Cui, Zhiming]的文章
百度学术
百度学术中相似的文章
[Huang, Shijie]的文章
[Zhang, Xukun]的文章
[Cui, Zhiming]的文章
必应学术
必应学术中相似的文章
[Huang, Shijie]的文章
[Zhang, Xukun]的文章
[Cui, Zhiming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TBME.2023.3337338.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。