| |||||||
ShanghaiTech University Knowledge Management System
Tissue Segmentation of Thick-Slice Fetal Brain MR Scans With Guidance From High-Quality Isotropic Volumes | |
2024-04 | |
发表期刊 | IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING (IF:4.4[JCR-2023],4.8[5-Year]) |
ISSN | 1558-2531 |
EISSN | 1558-2531 |
卷号 | 71期号:4页码:1404-1415 |
发表状态 | 已发表 |
DOI | 10.1109/TBME.2023.3337338 |
摘要 | Accurate tissue segmentation of thick-slice fetal brain magnetic resonance (MR) scans is crucial for both reconstruction of isotropic brain MR volumes and the quantification of fetal brain development. However, this task is challenging due to the use of thick-slice scans in clinically-acquired fetal brain data. To address this issue, we propose to leverage high-quality isotropic fetal brain MR volumes (and also their corresponding annotations) as guidance for segmentation of thick-slice scans. Due to existence of significant domain gap between high-quality isotropic volume (i.e., source data) and thick-slice scans (i.e., target data), we employ a domain adaptation technique to achieve the associated knowledge transfer (from high-quality 'source' volumes to thick-slice 'target' scans). Specifically, we first register the available high-quality isotropic fetal brain MR volumes across different gestational weeks to construct longitudinally-complete source data. To capture domain-invariant information, we then perform Fourier decomposition to extract image content and style codes. Finally, we propose a novel Cycle-Consistent Domain Adaptation Network (C2DA-Net) to efficiently transfer the knowledge learned from high-quality isotropic volumes for accurate tissue segmentation of thick-slice scans. Our C2DA-Net can fully utilize a small set of annotated isotropic volumes to guide tissue segmentation on unannotated thick-slice scans. Extensive experiments on a large-scale dataset of 372 clinically acquired thick-slice MR scans demonstrate that our C2DA-Net achieves much better performance than cutting-edge methods quantitatively and qualitatively. © 1964-2012 IEEE. |
关键词 | Brain tissue segmentation cycle-consistency fetal MRI unsupervised domain adaptation |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20235115236613 |
EI主题词 | Magnetic resonance |
EI分类号 | 461.1 Biomedical Engineering ; 461.2 Biological Materials and Tissue Engineering ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.2 Data Processing and Image Processing ; 746 Imaging Techniques |
原始文献类型 | Journal article (JA) |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/347968 |
专题 | 生物医学工程学院_PI研究组_崔智铭组 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_沈定刚组 |
通讯作者 | Chen, Geng; Shen, Dinggang |
作者单位 | 1.School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China; 2.Academy for Eng. & Tech. Fudan University, Shanghai, China; 3.Department of Radiology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; 4.National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Huang, Shijie,Zhang, Xukun,Cui, Zhiming,et al. Tissue Segmentation of Thick-Slice Fetal Brain MR Scans With Guidance From High-Quality Isotropic Volumes[J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,2024,71(4):1404-1415. |
APA | Huang, Shijie,Zhang, Xukun,Cui, Zhiming,Zhang, He,Chen, Geng,&Shen, Dinggang.(2024).Tissue Segmentation of Thick-Slice Fetal Brain MR Scans With Guidance From High-Quality Isotropic Volumes.IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,71(4),1404-1415. |
MLA | Huang, Shijie,et al."Tissue Segmentation of Thick-Slice Fetal Brain MR Scans With Guidance From High-Quality Isotropic Volumes".IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 71.4(2024):1404-1415. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。