ShanghaiTech University Knowledge Management System
Enhancing Malware Detection for Android Apps: Detecting Fine-Granularity Malicious Components | |
2023-09-15 | |
会议录名称 | 2023 38TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE)
![]() |
ISSN | 1938-4300 |
页码 | 1212-1224 |
发表状态 | 已发表 |
DOI | 10.1109/ASE56229.2023.00074 |
摘要 | Existing Android malware detection systems primarily concentrate on detecting malware apps, leaving a gap in the research concerning the detection of malicious components in apps. In this work, we propose a novel approach to detect fine-granularity malicious components for Android apps and build a prototype called AMCDroid. For a given app, AMCDroid first models app behavior to a homogenous graph based on the call graph and code statements of the app. Then, the graph is converted to a statement tree sequence for malware detection through the AST-based Neural Network with Feature Mapping (ASTNNF) model. Finally, if the app is detected as malware, AMCDroid applies fine-granularity malicious component detection (MCD) algorithm which is based on many-objective genetic algorithm to the homogenous graph for detecting malicious component in the app adaptively. We evaluate AMCDroid on 95,134 samples. Compared with the other two state-of-the-art methods in malware detection, AMCDroid gets the highest performance on the test set with 0.9699 F1-Score, and shows better robustness in facing obfuscation. Moreover, AMCDroid is capable of detecting fine-granularity malicious components of (obfuscated) malware apps. Especially, its average F1-Score exceeds another state-of-the-art method by 50%. © 2023 IEEE. |
关键词 | Android malware app deep learning many-objective genetic algorithm malicious component |
会议名称 | 38th IEEE/ACM International Conference on Automated Software Engineering, ASE 2023 |
会议地点 | Luxembourg, Luxembourg |
会议日期 | 11-15 Sept. 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20235015191698 |
EI主题词 | Genetic algorithms |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 723 Computer Software, Data Handling and Applications ; 723.2 Data Processing and Image Processing ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/347934 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_张良峰组 信息科学与技术学院_硕士生 |
通讯作者 | Tang, Yutian |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China; 2.School of Computing Science, University of Glasgow, United Kingdom |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Liu, Zhijie,Zhang, Liang Feng,Tang, Yutian. Enhancing Malware Detection for Android Apps: Detecting Fine-Granularity Malicious Components[C]:Institute of Electrical and Electronics Engineers Inc.,2023:1212-1224. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。