Enhancing Malware Detection for Android Apps: Detecting Fine-Granularity Malicious Components
2023-09-15
会议录名称2023 38TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE)
ISSN1938-4300
页码1212-1224
发表状态已发表
DOI10.1109/ASE56229.2023.00074
摘要Existing Android malware detection systems primarily concentrate on detecting malware apps, leaving a gap in the research concerning the detection of malicious components in apps. In this work, we propose a novel approach to detect fine-granularity malicious components for Android apps and build a prototype called AMCDroid. For a given app, AMCDroid first models app behavior to a homogenous graph based on the call graph and code statements of the app. Then, the graph is converted to a statement tree sequence for malware detection through the AST-based Neural Network with Feature Mapping (ASTNNF) model. Finally, if the app is detected as malware, AMCDroid applies fine-granularity malicious component detection (MCD) algorithm which is based on many-objective genetic algorithm to the homogenous graph for detecting malicious component in the app adaptively. We evaluate AMCDroid on 95,134 samples. Compared with the other two state-of-the-art methods in malware detection, AMCDroid gets the highest performance on the test set with 0.9699 F1-Score, and shows better robustness in facing obfuscation. Moreover, AMCDroid is capable of detecting fine-granularity malicious components of (obfuscated) malware apps. Especially, its average F1-Score exceeds another state-of-the-art method by 50%. © 2023 IEEE.
关键词Android malware app deep learning many-objective genetic algorithm malicious component
会议名称38th IEEE/ACM International Conference on Automated Software Engineering, ASE 2023
会议地点Luxembourg, Luxembourg
会议日期11-15 Sept. 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20235015191698
EI主题词Genetic algorithms
EI分类号461.4 Ergonomics and Human Factors Engineering ; 723 Computer Software, Data Handling and Applications ; 723.2 Data Processing and Image Processing ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/347934
专题信息科学与技术学院
信息科学与技术学院_PI研究组_张良峰组
信息科学与技术学院_硕士生
通讯作者Tang, Yutian
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China;
2.School of Computing Science, University of Glasgow, United Kingdom
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Liu, Zhijie,Zhang, Liang Feng,Tang, Yutian. Enhancing Malware Detection for Android Apps: Detecting Fine-Granularity Malicious Components[C]:Institute of Electrical and Electronics Engineers Inc.,2023:1212-1224.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Zhijie]的文章
[Zhang, Liang Feng]的文章
[Tang, Yutian]的文章
百度学术
百度学术中相似的文章
[Liu, Zhijie]的文章
[Zhang, Liang Feng]的文章
[Tang, Yutian]的文章
必应学术
必应学术中相似的文章
[Liu, Zhijie]的文章
[Zhang, Liang Feng]的文章
[Tang, Yutian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。