| |||||||
ShanghaiTech University Knowledge Management System
Gradient-based adaptive wavelet de-noising method for photoacoustic imaging in vivo | |
2023 | |
发表期刊 | JOURNAL OF BIOPHOTONICS (IF:2.0[JCR-2023],2.6[5-Year]) |
ISSN | 1864-063X |
EISSN | 1864-0648 |
卷号 | 17期号:2 |
DOI | 10.1002/jbio.202300289 |
摘要 | Photoacoustic imaging (PAI) has been applied to many biomedical applications over the past decades. However, the received PA signal usually suffers from poor SNR. Conventional solution of employing higher-power laser, or doing long-time signal averaging, may raise the system cost, time consumption, and tissue damage. Another strategy is de-noising algorithm design. In this paper, we propose a gradient-based adaptive wavelet de-noising method, which sets the energy gradient mutation point of low-frequency wavelet components as the threshold. We conducted simulation, ex-vivo and in-vivo experiments using acoustic-resolution PAM. The quality of de-noised PA image/signal by our proposed algorithm has improved by at least 30%, in comparison to the traditional signal denoising algorithms, which produces better contrast and clearer details. Moreover, it produces good results when dealing with multi-layer structures. The proposed de-noising method provides potential to improve the SNR of PA signal under single-shot low-power laser illumination for biomedical applications in vivo. © 2023 Wiley-VCH GmbH. |
关键词 | Image denoising Image enhancement Medical applications Photoacoustic effect Signal to noise ratio Adaptive wavelets De-noising Denoising methods Gradient based In-vivo In-Vivo imaging Low power laser Photo-acoustic imaging Wavelet denoising Wavelets transform |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | John Wiley and Sons Inc |
EI入藏号 | 20235015215635 |
EI主题词 | Wavelet transforms |
EI分类号 | 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 741.1 Light/Optics ; 751.1 Acoustic Waves ; 921.3 Mathematical Transformations |
原始文献类型 | Article in Press |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/347911 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_高飞组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 |
通讯作者 | Gao, Feng; Gao, Fei |
作者单位 | 1.Hybrid Imaging System Laboratory, School of Information Science and Technology, ShanghaiTech University, Shanghai, China; 2.Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China; 3.Shanghai Clinical Research and Trial Center, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Li, Xinke,Ge, Peng,Shen, Yuting,et al. Gradient-based adaptive wavelet de-noising method for photoacoustic imaging in vivo[J]. JOURNAL OF BIOPHOTONICS,2023,17(2). |
APA | Li, Xinke,Ge, Peng,Shen, Yuting,Gao, Feng,&Gao, Fei.(2023).Gradient-based adaptive wavelet de-noising method for photoacoustic imaging in vivo.JOURNAL OF BIOPHOTONICS,17(2). |
MLA | Li, Xinke,et al."Gradient-based adaptive wavelet de-noising method for photoacoustic imaging in vivo".JOURNAL OF BIOPHOTONICS 17.2(2023). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Li, Xinke]的文章 |
[Ge, Peng]的文章 |
[Shen, Yuting]的文章 |
百度学术 |
百度学术中相似的文章 |
[Li, Xinke]的文章 |
[Ge, Peng]的文章 |
[Shen, Yuting]的文章 |
必应学术 |
必应学术中相似的文章 |
[Li, Xinke]的文章 |
[Ge, Peng]的文章 |
[Shen, Yuting]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。