Neural Impostor: Editing Neural Radiance Fields with Explicit Shape Manipulation
2023-10
发表期刊COMPUTER GRAPHICS FORUM (IF:2.7[JCR-2023],2.9[5-Year])
ISSN0167-7055
EISSN1467-8659
卷号42期号:7
DOI10.1111/cgf.14981
摘要Neural Radiance Fields (NeRF) have significantly advanced the generation of highly realistic and expressive 3D scenes. However, the task of editing NeRF, particularly in terms of geometry modification, poses a significant challenge. This issue has obstructed NeRF's wider adoption across various applications. To tackle the problem of efficiently editing neural implicit fields, we introduce Neural Impostor, a hybrid representation incorporating an explicit tetrahedral mesh alongside a multigrid implicit field designated for each tetrahedron within the explicit mesh. Our framework bridges the explicit shape manipulation and the geometric editing of implicit fields by utilizing multigrid barycentric coordinate encoding, thus offering a pragmatic solution to deform, composite, and generate neural implicit fields while maintaining a complex volumetric appearance. Furthermore, we propose a comprehensive pipeline for editing neural implicit fields based on a set of explicit geometric editing operations. We show the robustness and adaptability of our system through diverse examples and experiments, including the editing of both synthetic objects and real captured data. Finally, we demonstrate the authoring process of a hybrid synthetic-captured object utilizing a variety of editing operations, underlining the transformative potential of Neural Impostor in the field of 3D content creation and manipulation. © 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
关键词Mesh generation Textures 3D scenes Appearance and texture representation CCS concept Computing methodologies Editing operations Image-Based Rendering Multigrids Shape manipulation Texture representation • computing methodology → rendering
URL查看原文
收录类别EI
语种英语
出版者John Wiley and Sons Inc
EI入藏号20234715079713
EI主题词Rendering (computer graphics)
EI分类号723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/347907
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
通讯作者Zhang, Ran
作者单位
1.Tencent Pixel Lab, United States;
2.ShanghaiTech University, China
第一作者单位上海科技大学
推荐引用方式
GB/T 7714
Liu, Ruiyang,Xiang, Jinxu,Zhao, Bowen,et al. Neural Impostor: Editing Neural Radiance Fields with Explicit Shape Manipulation[J]. COMPUTER GRAPHICS FORUM,2023,42(7).
APA Liu, Ruiyang,Xiang, Jinxu,Zhao, Bowen,Zhang, Ran,Yu, Jingyi,&Zheng, Changxi.(2023).Neural Impostor: Editing Neural Radiance Fields with Explicit Shape Manipulation.COMPUTER GRAPHICS FORUM,42(7).
MLA Liu, Ruiyang,et al."Neural Impostor: Editing Neural Radiance Fields with Explicit Shape Manipulation".COMPUTER GRAPHICS FORUM 42.7(2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Ruiyang]的文章
[Xiang, Jinxu]的文章
[Zhao, Bowen]的文章
百度学术
百度学术中相似的文章
[Liu, Ruiyang]的文章
[Xiang, Jinxu]的文章
[Zhao, Bowen]的文章
必应学术
必应学术中相似的文章
[Liu, Ruiyang]的文章
[Xiang, Jinxu]的文章
[Zhao, Bowen]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1111@cgf.14981.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。