ShanghaiTech University Knowledge Management System
SGTR+: End-to-End Scene Graph Generation With Transformer | |
2024-04 | |
发表期刊 | IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (IF:20.8[JCR-2023],22.2[5-Year]) |
ISSN | 1939-3539 |
EISSN | 1939-3539 |
卷号 | 46期号:4页码:2191-2205 |
发表状态 | 已发表 |
DOI | 10.1109/TPAMI.2023.3332246 |
摘要 | Scene Graph Generation (SGG) remains a challenging visual understanding task due to its compositional property. Most previous works adopt a bottom-up, two-stage or point-based, one-stage approach, which often suffers from high time complexity or suboptimal designs. In this paper, we propose a novel SGG method to address the aforementioned issues, formulating the task as a bipartite graph construction problem. To address the issues above, we create a transformer-based end-to-end framework to generate the entity and entity-aware predicate proposal set, and infer directed edges to form relation triplets. Moreover, we design a graph assembling module to infer the connectivity of the bipartite scene graph based on our entity-aware structure, enabling us to generate the scene graph in an end-to-end manner. Based on bipartite graph assembling paradigm, we further propose a new technical design to address the efficacy of entity-aware modeling and optimization stability of graph assembling. Equipped with the enhanced entity-aware design, our method achieves optimal performance and time-complexity. Extensive experimental results show that our design is able to achieve the state-of-the-art or comparable performance on three challenging benchmarks, surpassing most of the existing approaches and enjoying higher efficiency in inference. © 1979-2012 IEEE. |
关键词 | Computer vision deep learning scene graph generation scene understanding visual relationship detection Benchmarking Deep learning Graph theory Graphic methods Job analysis Bipartite graphs Decoding Generator Graph generation Proposal Scene graph generation Scene understanding Scene-graphs Task analysis Transformer Visual relationship detection |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20234715088289 |
EI主题词 | Computer vision |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 723.5 Computer Applications ; 741.2 Vision ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory |
原始文献类型 | Journal article (JA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/347906 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_何旭明组 |
通讯作者 | He, Xuming |
作者单位 | 1.ShanghaiTech University, Shanghai, China; 2.Shanghai AI Laboratory, Xuhui, Shanghai, China; 3.ShanghaiTech University, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Li, Rongjie,Zhang, Songyang,He, Xuming. SGTR+: End-to-End Scene Graph Generation With Transformer[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2024,46(4):2191-2205. |
APA | Li, Rongjie,Zhang, Songyang,&He, Xuming.(2024).SGTR+: End-to-End Scene Graph Generation With Transformer.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,46(4),2191-2205. |
MLA | Li, Rongjie,et al."SGTR+: End-to-End Scene Graph Generation With Transformer".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 46.4(2024):2191-2205. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。