Vector Quantized Multi-modal Guidance for Alzheimer’s Disease Diagnosis Based on Feature Imputation
2024
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号14348 LNCS
页码403-412
发表状态已发表
DOI10.1007/978-3-031-45673-2_40
摘要

Magnetic Resonance Imaging (MRI) and positron emission tomography (PET) are the most used imaging modalities for Alzheimer’s disease (AD) diagnosis in clinics. Although PET can better capture AD-specific pathologies than MRI, it is less used compared with MRI due to high cost and radiation exposure. Imputing PET images from MRI is one way to bypass the issue of unavailable PET, but is challenging due to severe ill-posedness. Instead, we propose to directly impute classification-oriented PET features and combine them with real MRI to improve the overall performance of AD diagnosis. In order to more effectively impute PET features, we discretize the feature space by vector quantization and employ transformer to perform feature transition between MRI and PET. Our model is composed of three stages including codebook generation, mapping construction, and classifier enhancement based on combined features. We employ paired MRI-PET data during training to enhance the performance of MRI data during inference. Experimental results on ADNI dataset including 1346 subjects show a boost in classification performance of MRI without requiring PET. Our proposed method also outperforms other state-of-the-art data imputation methods. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.

关键词Classification (of information) Computer aided diagnosis Medical computing Medical imaging Positron emission tomography Vector spaces Alzheimer Alzheimer’s disease Discrete learning Disease diagnosis Feature imputation Imaging modality Incomplete modality Multi-modal Multi-modal learning Performance
会议名称14th International Workshop on Machine Learning in Medical Imaging, MLMI 2023
会议地点Vancouver, BC, Canada
会议日期October 8, 2023 - October 8, 2023
收录类别EI
语种英语
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20234515039285
EI主题词Magnetic resonance imaging
EISSN1611-3349
EI分类号461.1 Biomedical Engineering ; 701.2 Magnetism: Basic Concepts and Phenomena ; 716.1 Information Theory and Signal Processing ; 723.5 Computer Applications ; 746 Imaging Techniques ; 903.1 Information Sources and Analysis ; 921 Mathematics
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346444
专题生物医学工程学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
生物医学工程学院_PI研究组_沈定刚组
通讯作者Shen, Dinggang
作者单位
1.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China;
2.Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China;
3.Shanghai Clinical Research and Trial Center, Shanghai, China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Zhang, Yuanwang,Sun, Kaicong,Liu, Yuxiao,et al. Vector Quantized Multi-modal Guidance for Alzheimer’s Disease Diagnosis Based on Feature Imputation[C]:Springer Science and Business Media Deutschland GmbH,2024:403-412.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Yuanwang]的文章
[Sun, Kaicong]的文章
[Liu, Yuxiao]的文章
百度学术
百度学术中相似的文章
[Zhang, Yuanwang]的文章
[Sun, Kaicong]的文章
[Liu, Yuxiao]的文章
必应学术
必应学术中相似的文章
[Zhang, Yuanwang]的文章
[Sun, Kaicong]的文章
[Liu, Yuxiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。