A Bone Lesion Identification Network (BLIN) in CT Images with Weakly Supervised Learning
2024
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号14349 LNCS
页码243-252
发表状态已发表
DOI10.1007/978-3-031-45676-3_25
摘要

Malignant bone lesions often lead to poor prognosis if not detected and treated in time. It also influences the treatment plan for primary tumor. However, diagnosing these lesions can be challenging due to their subtle appearance resemblances to other pathological conditions. Precise segmentation can help identify lesion types but the regions of interest (ROIs) are often difficult to delineate, particularly for bone lesions. We propose a bone lesion identification network (BLIN) in whole body non-contrast CT scans based on weakly supervised learning through class activation map (CAM). In the algorithm, location of the focal box of each lesion is used to supervise network training through CAM. Compared with precise segmentation, focal boxes are relatively easy to be obtained either by manual annotation or automatic detection algorithms. Additionally, to deal with uneven distribution of training samples of different lesion types, a new sampling strategy is employed to reduce overfitting of the majority classes. Instead of using complicated network structures such as grouping and ensemble for long-tailed data classification, we use a single-branch structure with CBAM attention to prove the effectiveness of the weakly supervised method. Experiments were carried out using bone lesion dataset, and the results showed that the proposed method outperformed the state-of-the-art algorithms for bone lesion classification. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.

关键词Cams Chemical activation Classification (of information) Computerized tomography Supervised learning Activation maps Attention Class activation map CT Image Lesion identifications Pathological conditions Regions of interest Treatment plans Weakly supervised learning Weakly supervision
会议名称14th International Workshop on Machine Learning in Medical Imaging, MLMI 2023
会议地点Vancouver, BC, Canada
会议日期October 8, 2023 - October 8, 2023
收录类别EI
语种英语
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20234515038985
EI主题词Diagnosis
EISSN1611-3349
EI分类号461.6 Medicine and Pharmacology ; 601.3 Mechanisms ; 716.1 Information Theory and Signal Processing ; 723.5 Computer Applications ; 802.2 Chemical Reactions ; 804 Chemical Products Generally ; 903.1 Information Sources and Analysis
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346438
专题信息科学与技术学院_硕士生
通讯作者Cao, Xiaohuan
作者单位
1.Shanghai United Imaging Intelligence Co., Ltd, Shanghai, China;
2.ShanghaiTech University, Shanghai, China
第一作者单位上海科技大学
推荐引用方式
GB/T 7714
Deng, Kehao,Wang, Bin,Ma, Shanshan,et al. A Bone Lesion Identification Network (BLIN) in CT Images with Weakly Supervised Learning[C]:Springer Science and Business Media Deutschland GmbH,2024:243-252.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Deng, Kehao]的文章
[Wang, Bin]的文章
[Ma, Shanshan]的文章
百度学术
百度学术中相似的文章
[Deng, Kehao]的文章
[Wang, Bin]的文章
[Ma, Shanshan]的文章
必应学术
必应学术中相似的文章
[Deng, Kehao]的文章
[Wang, Bin]的文章
[Ma, Shanshan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。