消息
×
loading..
Multispectral LiDAR-based underwater ore classification using a tunable laser source
2024-01-15
发表期刊OPTICS COMMUNICATIONS (IF:2.2[JCR-2023],2.0[5-Year])
ISSN0030-4018
EISSN1873-0310
卷号551
发表状态已发表
DOI10.1016/j.optcom.2023.129903
摘要

Light Detection and Ranging (LiDAR) technology has been extensively used to collect precise geometric information. However, conventional LiDAR sensors are restricted to single-wavelength operation, limiting their ability to capture valuable spectral information. Multispectral LiDAR (MSL) systems, on the other hand, have emerged as a promising solution by facilitating the active acquisition of spatial and spectral data. These advanced systems exhibit tremendous potential in facilitating advanced analysis and classification of seafloor sediments. In this study, the first demonstration of an MSL system optimized for investigating the feasibility of underwater ore classification using a tunable laser source is described. The MSL prototype features a spectral resolution of 10 nm, and 11 spectral channels, covering the range from 460 to 560 nm. Laboratory-based experiments were conducted to evaluate the accuracy of range measurements and the classification performance of the system. The spectral profiles of eight distinct ore samples acquired by the MSL were utilized for classification using four classification methods: naive Bayes (NB), k Nearest Neighbor (KNN), support vector machine (SVM), and random forest (RF). Furthermore, comparative analyses were conducted to investigate the classification enhancements realized by leveraging the MSL system with multiple spectral channels as opposed to single-wavelength and dual-wavelength systems. © 2023

关键词Classification (of information) Forestry Laser tuning Lasers Nearest neighbor search Optical radar Geometric information Light detection and ranging Multi-spectral Multiwavelength Ore classification Ranging sensors Single wavelength Spectral channels Tunable laser sources Underwater
URL查看原文
收录类别EI ; SCI
语种英语
资助项目National Natural Science Foundation of China["61991450","61991453"] ; Shanghai "Science and Technology Innovation Action Plan" Social Development Science and Technology Project[20DZ1206502]
WOS研究方向Optics
WOS类目Optics
WOS记录号WOS:001104312100001
出版者Elsevier B.V.
EI入藏号20234515013334
EI主题词Support vector machines
EI分类号716.1 Information Theory and Signal Processing ; 716.2 Radar Systems and Equipment ; 723 Computer Software, Data Handling and Applications ; 741.3 Optical Devices and Systems ; 744.1 Lasers, General ; 821 Agricultural Equipment and Methods ; Vegetation and Pest Control ; 903.1 Information Sources and Analysis ; 921.5 Optimization Techniques
原始文献类型Journal article (JA)
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346392
专题物质科学与技术学院
物质科学与技术学院_特聘教授组_陈卫标组
物质科学与技术学院_博士生
通讯作者He, Yan
作者单位
1.Chinese Acad Sci, Key Lab Space Laser Commun & Detect Technol, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
2.Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
3.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
4.Pilot Natl Lab Marine Sci & Technol, Dept Guanlan Ocean Sci Satellites, Qingdao 266237, Peoples R China
推荐引用方式
GB/T 7714
Chen, Yongqiang,Luo, Qihui,Guo, Shouchuan,et al. Multispectral LiDAR-based underwater ore classification using a tunable laser source[J]. OPTICS COMMUNICATIONS,2024,551.
APA Chen, Yongqiang.,Luo, Qihui.,Guo, Shouchuan.,Chen, Weibiao.,Hu, Shanjiang.,...&Huang, Yifan.(2024).Multispectral LiDAR-based underwater ore classification using a tunable laser source.OPTICS COMMUNICATIONS,551.
MLA Chen, Yongqiang,et al."Multispectral LiDAR-based underwater ore classification using a tunable laser source".OPTICS COMMUNICATIONS 551(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Yongqiang]的文章
[Luo, Qihui]的文章
[Guo, Shouchuan]的文章
百度学术
百度学术中相似的文章
[Chen, Yongqiang]的文章
[Luo, Qihui]的文章
[Guo, Shouchuan]的文章
必应学术
必应学术中相似的文章
[Chen, Yongqiang]的文章
[Luo, Qihui]的文章
[Guo, Shouchuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。