| |||||||
ShanghaiTech University Knowledge Management System
Research on beam dynamics optimization of a storage ring based on machine learning | |
2024-01-25 | |
会议录名称 | 2023 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND NEXT GENERATION NETWORKS(ICNGN)
![]() |
发表状态 | 已发表 |
DOI | 10.1109/ICNGN59831.2023.10396700 |
摘要 | This paper discusses the machine learning methods for the beam dynamics optimization in a storage ring for synchrotron light sources. A new method of closed orbit feedback based on machine learning was developed to enhance synchrotron radiation stability, which was then piloted at Shanghai Synchrotron Radiation Facility (SSRF). We use a novel machine learning technique to calibrate the linear optics, which differs from the traditional singular value decomposition (SVD)-based linear optics from closed orbit (LOCO). Predicting dynamic apertures is also one of the machine learning applications in our work. © 2023 IEEE. |
关键词 | machine learning calibration and fitting methods synchrotron light sources cluster finding storage ring convolutional neural network |
会议名称 | 2nd International Conference on Intelligent Computing and Next Generation Networks, ICNGN 2023 |
会议地点 | Hangzhou, China |
会议日期 | 17-18 November 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20240815572530 |
EI主题词 | Machine learning |
EI分类号 | 723.4 Artificial Intelligence ; 921 Mathematics ; 932.1.1 Particle Accelerators |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346080 |
专题 | 物质科学与技术学院_博士生 |
作者单位 | 1.Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences 2.School of Physical Science and Technology, ShanghaiTech University |
第一作者单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Ruichun Li,Qinglei Zhang,Zhentang Zhao,et al. Research on beam dynamics optimization of a storage ring based on machine learning[C]:Institute of Electrical and Electronics Engineers Inc.,2024. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。