Multi-Label Personalized Classification via Exclusive Sparse Tensor Factorization
2023-12-04
会议录名称2023 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM)
ISSN1550-4786
页码398-407
发表状态已发表
DOI10.1109/ICDM58522.2023.00049
摘要

Multi-Label Classification (MLC), which aims to assign multiple labels to each sample simultaneously, has achieved great success in a wide range of applications. MLC saves global label correlation by building a single model shared by all samples but ignores sample-specific local structures, while Personalized Learning (PL) is able to preserve sample-specific information by learning local models but ignores the global structure. Integrating PL with MLC is a straightforward way to overcome the limitations, but it still faces three key challenges. 1) capture both local and global structures in a unified model; 2) efficiently preserve high-order interactions among labels, features and samples; 3) learn a concise and interpretable model where only a fraction of interactions are associated with multiple labels. In this paper, we propose a novel Multi-Label Personalized Classification (MLPC) method to handle these challenges. For 1), it integrates local and global components to preserve sample-specific information and global structure shared across samples, respectively. For 2), a multilinear model is developed to capture high-order interactions, and over-parameterization is avoided by tensor factorization. For 3), exclusive sparsity regularization penalizes factorization by promoting intra-group competition, thereby eliminating irrelevant and redundant interactions during Exclusive Sparse Tensor Factorization (ESTF). Moreover, theoretical analysis reveals the equivalence between MLPC with a family of jointly regularized counterparts. We develop an alternating algorithm to solve the optimization problem, and extensive experiments on various datasets demonstrate its effectiveness. © 2023 IEEE.

会议录编者/会议主办者IEEE Computer Society ; Technology Innovation Institute ; TWO SIGMA ; US National Science Foundation (NSF)
关键词Multi-Label Classification Personalized Learning Exclusive Sparse Tensor Factorization
会议名称23rd IEEE International Conference on Data Mining, ICDM 2023
会议地点Shanghai, China
会议日期1-4 Dec. 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20240815606078
EI主题词Classification (of information)
EI分类号716.1 Information Theory and Signal Processing ; 903.1 Information Sources and Analysis ; 921 Mathematics ; 921.1 Algebra
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346072
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_孙露组
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Weijia Lin,Jiankun Wang,Lu Sun,et al. Multi-Label Personalized Classification via Exclusive Sparse Tensor Factorization[C]//IEEE Computer Society, Technology Innovation Institute, TWO SIGMA, US National Science Foundation (NSF):Institute of Electrical and Electronics Engineers Inc.,2023:398-407.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Weijia Lin]的文章
[Jiankun Wang]的文章
[Lu Sun]的文章
百度学术
百度学术中相似的文章
[Weijia Lin]的文章
[Jiankun Wang]的文章
[Lu Sun]的文章
必应学术
必应学术中相似的文章
[Weijia Lin]的文章
[Jiankun Wang]的文章
[Lu Sun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。