ShanghaiTech University Knowledge Management System
Multi-Label Personalized Classification via Exclusive Sparse Tensor Factorization | |
2023-12-04 | |
会议录名称 | 2023 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM)
![]() |
ISSN | 1550-4786 |
页码 | 398-407 |
发表状态 | 已发表 |
DOI | 10.1109/ICDM58522.2023.00049 |
摘要 | Multi-Label Classification (MLC), which aims to assign multiple labels to each sample simultaneously, has achieved great success in a wide range of applications. MLC saves global label correlation by building a single model shared by all samples but ignores sample-specific local structures, while Personalized Learning (PL) is able to preserve sample-specific information by learning local models but ignores the global structure. Integrating PL with MLC is a straightforward way to overcome the limitations, but it still faces three key challenges. 1) capture both local and global structures in a unified model; 2) efficiently preserve high-order interactions among labels, features and samples; 3) learn a concise and interpretable model where only a fraction of interactions are associated with multiple labels. In this paper, we propose a novel Multi-Label Personalized Classification (MLPC) method to handle these challenges. For 1), it integrates local and global components to preserve sample-specific information and global structure shared across samples, respectively. For 2), a multilinear model is developed to capture high-order interactions, and over-parameterization is avoided by tensor factorization. For 3), exclusive sparsity regularization penalizes factorization by promoting intra-group competition, thereby eliminating irrelevant and redundant interactions during Exclusive Sparse Tensor Factorization (ESTF). Moreover, theoretical analysis reveals the equivalence between MLPC with a family of jointly regularized counterparts. We develop an alternating algorithm to solve the optimization problem, and extensive experiments on various datasets demonstrate its effectiveness. © 2023 IEEE. |
会议录编者/会议主办者 | IEEE Computer Society ; Technology Innovation Institute ; TWO SIGMA ; US National Science Foundation (NSF) |
关键词 | Multi-Label Classification Personalized Learning Exclusive Sparse Tensor Factorization |
会议名称 | 23rd IEEE International Conference on Data Mining, ICDM 2023 |
会议地点 | Shanghai, China |
会议日期 | 1-4 Dec. 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20240815606078 |
EI主题词 | Classification (of information) |
EI分类号 | 716.1 Information Theory and Signal Processing ; 903.1 Information Sources and Analysis ; 921 Mathematics ; 921.1 Algebra |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346072 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_孙露组 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Weijia Lin,Jiankun Wang,Lu Sun,et al. Multi-Label Personalized Classification via Exclusive Sparse Tensor Factorization[C]//IEEE Computer Society, Technology Innovation Institute, TWO SIGMA, US National Science Foundation (NSF):Institute of Electrical and Electronics Engineers Inc.,2023:398-407. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Weijia Lin]的文章 |
[Jiankun Wang]的文章 |
[Lu Sun]的文章 |
百度学术 |
百度学术中相似的文章 |
[Weijia Lin]的文章 |
[Jiankun Wang]的文章 |
[Lu Sun]的文章 |
必应学术 |
必应学术中相似的文章 |
[Weijia Lin]的文章 |
[Jiankun Wang]的文章 |
[Lu Sun]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。