| |||||||
ShanghaiTech University Knowledge Management System
Revisiting Event-based Video Frame Interpolation | |
2023 | |
会议录名称 | PROCEEDINGS OF IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS |
ISSN | 2153-0858 |
页码 | 1292-1299 |
发表状态 | 已发表 |
DOI | 10.1109/IROS55552.2023.10341804 |
摘要 | Dynamic vision sensors or event cameras provide rich complementary information for video frame interpolation. Existing state-of-the-art methods follow the paradigm of combining both synthesis-based and warping networks. However, few of those methods fully respect the intrinsic characteristics of events streams. Given that event cameras only encode intensity changes and polarity rather than color intensities, estimating optical flow from events is arguably more difficult than from RGB information. We therefore propose to incorporate RGB information in an event-guided optical flow refinement strategy. Moreover, in light of the quasi-continuous nature of the time signals provided by event cameras, we propose a divide-and-conquer strategy in which event-based intermediate frame synthesis happens incrementally in multiple simplified stages rather than in a single, long stage. Extensive experiments on both synthetic and real-world datasets show that these modifications lead to more reliable and realistic intermediate frame results than previous video frame interpolation methods. Our findings underline that a careful consideration of event characteristics such as high temporal density and elevated noise benefits interpolation accuracy. © 2023 IEEE. |
关键词 | Cameras Computer vision Interpolation Color intensity Dynamic vision sensors Event streams Event-based Frame interpolation Intensity change Intrinsic characteristics State-of-the-art methods Video frame Warpings |
会议名称 | 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 |
会议地点 | Detroit, MI, United states |
会议日期 | October 1, 2023 - October 5, 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20240315412493 |
EI主题词 | Optical flows |
EISSN | 2153-0866 |
EI分类号 | 723.5 Computer Applications ; 741.1 Light/Optics ; 741.2 Vision ; 742.2 Photographic Equipment ; 921.6 Numerical Methods |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/346068 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_高盛华组 信息科学与技术学院_PI研究组_Laurent Kneip组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 |
共同第一作者 | Yichen Zhu |
通讯作者 | Shenghua Gao |
作者单位 | 1.UC San Diego 2.ShanghaiTech University 3.National University of Singapore 4.Shanghai AI Laboratory 5.Technical University of Munich |
通讯作者单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Jiaben Chen,Yichen Zhu,Dongze Lian,et al. Revisiting Event-based Video Frame Interpolation[C]:Institute of Electrical and Electronics Engineers Inc.,2023:1292-1299. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。