| |||||||
ShanghaiTech University Knowledge Management System
Conic10K: A Challenging Math Problem Understanding and Reasoning Dataset | |
2023-12 | |
会议录名称 | FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: EMNLP 2023 |
页码 | 6444-6458 |
发表状态 | 正式接收 |
摘要 | Mathematical understanding and reasoning are crucial tasks for assessing the capabilities of artificial intelligence (AI). However, existing benchmarks either require just a few steps of reasoning, or only contain a small amount of data in one specific topic, making it hard to analyse AI’s behaviour with reference to different problems within a specific topic in detail. In this work, we propose CONIC10K, a challenging math problem dataset on conic sections in Chinese senior high school education. Our dataset contains various problems with different reasoning depths, while only the knowledge from conic sections is required. Since the dataset only involves a narrow range of knowledge, it is easy to separately analyse the knowledge a model possesses and the reasoning ability it has. For each problem, we provide a high-quality formal representation, the reasoning steps, and the final solution. Experiments show that existing large language models, including GPT-4, exhibit weak performance on complex reasoning. We hope that our findings could inspire more advanced techniques for precise natural language understanding and reasoning. Our dataset and codes are available at https://github.com/whyNLP/Conic10K. |
会议录编者/会议主办者 | Association for Computational Linguistics ; Apple ; Colossal-AI ; et al. ; Google Research ; GTCOM ; King Salman Global Academy for Arabic Language |
关键词 | Conic sections Formal representations High quality Higher School Knowledge IT Language model Performance Problem understanding Reasoning ability School education |
会议名称 | EMNLP2023 |
会议地点 | Singapore, Singapore |
会议日期 | 2023-12 |
学科门类 | 工学::计算机科学与技术(可授工学、理学学位) |
收录类别 | EI |
语种 | 英语 |
出版者 | Association for Computational Linguistics (ACL) |
EI入藏号 | 20240515454521 |
EI主题词 | Computational linguistics |
EI分类号 | 721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/345943 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_屠可伟组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
共同第一作者 | Kewei Tu |
通讯作者 | Kewei Tu; Yi Zhou |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University 2.Shanghai Engineering Research Center of Intelligent Vision and Imaging 3.School of Information Science and Technology, University of Science and Technology of China 4.National Engineering Laboratory for Brain-inspired Intelligence Technology and Application 5.Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education 6.Shanghai Innovation Center for Processor Technologies 7.Department of Computer Science and Engineering, Shanghai Jiao Tong University |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Haoyi Wu,Wenyang Hui,Yezeng Chen,et al. Conic10K: A Challenging Math Problem Understanding and Reasoning Dataset[C]//Association for Computational Linguistics, Apple, Colossal-AI, et al., Google Research, GTCOM, King Salman Global Academy for Arabic Language:Association for Computational Linguistics (ACL),2023:6444-6458. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。