消息
×
loading..
Conic10K: A Challenging Math Problem Understanding and Reasoning Dataset
2023-12
会议录名称FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: EMNLP 2023
页码6444-6458
发表状态正式接收
摘要

Mathematical understanding and reasoning are crucial tasks for assessing the capabilities of artificial intelligence (AI). However, existing benchmarks either require just a few steps of reasoning, or only contain a small amount of data in one specific topic, making it hard to analyse AI’s behaviour with reference to different problems within a specific topic in detail. In this work, we propose CONIC10K, a challenging math problem dataset on conic sections in Chinese senior high school education. Our dataset contains various problems with different reasoning depths, while only the knowledge from conic sections is required. Since the dataset only involves a narrow range of knowledge, it is easy to separately analyse the knowledge a model possesses and the reasoning ability it has. For each problem, we provide a high-quality formal representation, the reasoning steps, and the final solution. Experiments show that existing large language models, including GPT-4, exhibit weak performance on complex reasoning. We hope that our findings could inspire more advanced techniques for precise natural language understanding and reasoning. Our dataset and codes are available at https://github.com/whyNLP/Conic10K.

会议录编者/会议主办者Association for Computational Linguistics ; Apple ; Colossal-AI ; et al. ; Google Research ; GTCOM ; King Salman Global Academy for Arabic Language
关键词Conic sections Formal representations High quality Higher School Knowledge IT Language model Performance Problem understanding Reasoning ability School education
会议名称EMNLP2023
会议地点Singapore, Singapore
会议日期2023-12
学科门类工学::计算机科学与技术(可授工学、理学学位)
收录类别EI
语种英语
出版者Association for Computational Linguistics (ACL)
EI入藏号20240515454521
EI主题词Computational linguistics
EI分类号721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/345943
专题信息科学与技术学院
信息科学与技术学院_PI研究组_屠可伟组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
共同第一作者Kewei Tu
通讯作者Kewei Tu; Yi Zhou
作者单位
1.School of Information Science and Technology, ShanghaiTech University
2.Shanghai Engineering Research Center of Intelligent Vision and Imaging
3.School of Information Science and Technology, University of Science and Technology of China
4.National Engineering Laboratory for Brain-inspired Intelligence Technology and Application
5.Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education
6.Shanghai Innovation Center for Processor Technologies
7.Department of Computer Science and Engineering, Shanghai Jiao Tong University
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Haoyi Wu,Wenyang Hui,Yezeng Chen,et al. Conic10K: A Challenging Math Problem Understanding and Reasoning Dataset[C]//Association for Computational Linguistics, Apple, Colossal-AI, et al., Google Research, GTCOM, King Salman Global Academy for Arabic Language:Association for Computational Linguistics (ACL),2023:6444-6458.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Haoyi Wu]的文章
[Wenyang Hui]的文章
[Yezeng Chen]的文章
百度学术
百度学术中相似的文章
[Haoyi Wu]的文章
[Wenyang Hui]的文章
[Yezeng Chen]的文章
必应学术
必应学术中相似的文章
[Haoyi Wu]的文章
[Wenyang Hui]的文章
[Yezeng Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。