Evolutionary Ensemble Learning for Remote Interference Discrimination in 6G Networks
2023
会议录名称IEEE FCN 2023
发表状态已发表
DOI10.1109/FCN60432.2023.10544330
摘要

Atmospheric ducts can result in severe remote interference in time-division duplex (TDD) communication systems of the sixth-generation (6G). The accurate remote interference discrimination is crucial for ensuring communication reliability. In this paper, an evolutionary ensemble learning method is originally proposed, that allows effectively discriminating remote interference in the imbalanced dataset with a low probability of overfitting. In particular, to tackle the problem of reduced classifier generalization arising from the imbalanced dataset, a weighted evolutionary strategy optimized ensemble neural networks (WENNE) is designed for discriminating remote interference. Numerical results illustrate that our proposed method improves the recognition by 20% compared to existing interference discrimination algorithms on the real dataset consisting of a total of 5,520,000 data pieces.

关键词Classification (of information) Evolutionary algorithms Numerical methods Queueing networks Time division multiplexing Atmospheric ducts Communication reliabilities Communications systems Ensemble learning Evolutionary strategies Imbalanced dataset Learning methods Remote interference discrimination Sixth-generation communication Time division duplex
会议名称2023 International Conference on Future Communications and Networks, FCN 2023
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Queenstown, New Zealand
会议日期17-20 Dec. 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目Science and Technology Commission Foundation of Shanghai[22511100600] ; Young Elite Scientists Sponsorship Program by CIC[2021QNRC001]
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Telecommunications
WOS记录号WOS:001244885000045
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20242516276037
EI主题词Learning systems
EI分类号716.1 Information Theory and Signal Processing ; 903.1 Information Sources and Analysis ; 921.6 Numerical Methods
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/345914
专题信息科学与技术学院_特聘教授组_胡宏林组
信息科学与技术学院_博士生
推荐引用方式
GB/T 7714
Zhang Hanzhong,Zhou Ting,Xu Tianheng,et al. Evolutionary Ensemble Learning for Remote Interference Discrimination in 6G Networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:Institute of Electrical and Electronics Engineers Inc.,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang Hanzhong]的文章
[Zhou Ting]的文章
[Xu Tianheng]的文章
百度学术
百度学术中相似的文章
[Zhang Hanzhong]的文章
[Zhou Ting]的文章
[Xu Tianheng]的文章
必应学术
必应学术中相似的文章
[Zhang Hanzhong]的文章
[Zhou Ting]的文章
[Xu Tianheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。