| |||||||
ShanghaiTech University Knowledge Management System
Hybrid Reconfigurable Intelligent Surface Assisted Over-the-Air Federated Learning | |
2023-05-28 | |
会议录名称 | 2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS)
![]() |
ISSN | 2164-7038 |
页码 | 367-372 |
发表状态 | 已发表 |
DOI | 10.1109/ICCWorkshops57953.2023.10283597 |
摘要 | By making full use of the superposition property, over-the-air computation (AirComp) enables low-latency model aggregation in wireless federated learning (FL). Meanwhile, reconfigurable intelligent surface can be adopted to mitigate the communication bottleneck of model aggregation in AirComp-based FL by introducing an additional reflective path. However, the double path loss attenuation in the reflective link limits the performance improvement delivered by passive RIS. To alleviate the detrimental effect of the double path loss attenuation, we propose to deploy a hybrid RIS with both active and passive elements to support over-the-air FL. We characterize the impact of gradient distortion on the convergence of FL and further formulate a gradient distortion minimization problem, while considering the modulus constraints of RIS. Furthermore, we develop an alternating minimization algorithm to implement joint design for the transmit scalars, RIS amplifying/reflecting coefficients, and receive beamforming. Simulation results show that our proposed hybrid RIS aided AirComp-based FL achieves superior performance in terms of test accuracy. © 2023 IEEE. |
关键词 | Federated learning Array signal processing Conferences Computational modeling Atmospheric modeling Minimization Distortion |
会议名称 | 2023 IEEE International Conference on Communications Workshops, ICC Workshops 2023 |
会议地点 | Rome, Italy |
会议日期 | 28 May-1 June 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20234815140387 |
EI主题词 | Agglomeration |
EI分类号 | 802.3 Chemical Operations |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/343612 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Jiaqi Jin,Zhibin Wang,Liantao Wu,et al. Hybrid Reconfigurable Intelligent Surface Assisted Over-the-Air Federated Learning[C]:Institute of Electrical and Electronics Engineers Inc.,2023:367-372. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。