3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks
2019-07
发表期刊IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (IF:4.7[JCR-2023],5.1[5-Year])
ISSN1077-2626
卷号25期号:7页码:2336-2348
发表状态已发表
DOI10.1109/TVCG.2018.2839685
摘要

In this paper, we present a novel approach for 3D dental model segmentation via deep Convolutional Neural Networks (CNNs). Traditional geometry-based methods tend to receive undesirable results due to the complex appearance of human teeth (e.g., missing/rotten teeth, feature-less regions, crowding teeth, extra medical attachments, etc.). Furthermore, labeling of individual tooth is hardly enabled in traditional tooth segmentation methods. To address these issues, we propose to learn a generic and robust segmentation model by exploiting deep Neural Networks, namely NNs. The segmentation task is achieved by labeling each mesh face. We extract a set of geometry features as face feature representations. In the training step, the network is fed with those features, and produces a probability vector, of which each element indicates the probability a face belonging to the corresponding model part. To this end, we extensively experiment with various network structures, and eventually arrive at a 2-level hierarchical CNNs structure for tooth segmentation: one for teeth-gingiva labeling and the other for inter-teeth labeling. Further, we propose a novel boundary-aware tooth simplification method to significantly improve efficiency in the stage of feature extraction. After CNNs prediction, we do graph-based label optimization and further refine the boundary with an improved version of fuzzy clustering. The accuracy of our mesh labeling method exceeds that of the state-of-art geometry-based methods, reaching 99.06 percent measured by area which is directly applicable in orthodontic CAD systems. It is also robust to any possible foreign matters on model surface, e.g., air bubbles, dental accessories, and many more.

关键词Boundary-aware simplification 3D mesh segmentation deep convolutional neural networks fuzzy clustering
URL查看原文
收录类别SCI ; SCIE
语种英语
资助项目National Natural Science Foundation of China[61502306]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:000469838700001
出版者IEEE COMPUTER SOC
WOS关键词MESH SEGMENTATION ; OBJECT RECOGNITION ; SHAPE SEGMENTATION ; FEATURES ; DECOMPOSITION
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/34341
专题信息科学与技术学院_硕士生
通讯作者Zheng, Youyi
作者单位
1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310058, Zhejiang, Peoples R China
第一作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Xu, Xiaojie,Liu, Chang,Zheng, Youyi. 3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2019,25(7):2336-2348.
APA Xu, Xiaojie,Liu, Chang,&Zheng, Youyi.(2019).3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,25(7),2336-2348.
MLA Xu, Xiaojie,et al."3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 25.7(2019):2336-2348.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Xiaojie]的文章
[Liu, Chang]的文章
[Zheng, Youyi]的文章
百度学术
百度学术中相似的文章
[Xu, Xiaojie]的文章
[Liu, Chang]的文章
[Zheng, Youyi]的文章
必应学术
必应学术中相似的文章
[Xu, Xiaojie]的文章
[Liu, Chang]的文章
[Zheng, Youyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。