| |||||||
ShanghaiTech University Knowledge Management System
Fragmentation Guided Human Shape Reconstruction | |
2019 | |
发表期刊 | IEEE ACCESS (IF:3.4[JCR-2023],3.7[5-Year]) |
ISSN | 2169-3536 |
卷号 | 7页码:45651-45661 |
发表状态 | 已发表 |
DOI | 10.1109/ACCESS.2019.2905879 |
摘要 | We present a novel semantic-driven multi-view reconstruction technique for producing realistic 3D human models. Our approach borrows the fragmentation concept in Cubism style painting, where the human body is decomposed into semantically meaningful fragments for conveying space and movement. We first employ deep learning-based skeleton estimation for warping a proxy human model under the canonical pose to the target multi-view input. It also conducts 3D fragment labeling on the warped model to separate different human body parts. Finally, we utilize the normal, depth, and fragment label of the proxy model as priors in the multi-view stereo reconstruction process. The comprehensive experiments have shown that our reconstruction technique outperforms the state-of-the-art methods in robustness and accuracy, especially near occlusion boundaries and on textureless regions. In particular, it manages to significantly reduce the "adhesive" artifacts commonly observed in MVS that incorrectly stitches different body parts. |
关键词 | 3D Reconstruction human shape semantic analysis multi-view stereo |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | SHEITC[2018-RGZN-01011] |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000465620900001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20191806845576 |
EI主题词 | Adhesives ; Deep learning ; Image reconstruction ; Semantics ; Textures |
EI分类号 | Data Processing and Image Processing:723.2 |
原始文献类型 | Article |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/34290 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_虞晶怡组 |
作者单位 | 1.University of Chinese Academy of Sciences, Beijing, China 2.DGene Inc., Shanghai, China 3.School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
推荐引用方式 GB/T 7714 | Yingliang Zhang,Xi Luo,Wei Yang,et al. Fragmentation Guided Human Shape Reconstruction[J]. IEEE ACCESS,2019,7:45651-45661. |
APA | Yingliang Zhang,Xi Luo,Wei Yang,&Jingyi Yu.(2019).Fragmentation Guided Human Shape Reconstruction.IEEE ACCESS,7,45651-45661. |
MLA | Yingliang Zhang,et al."Fragmentation Guided Human Shape Reconstruction".IEEE ACCESS 7(2019):45651-45661. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yingliang Zhang]的文章 |
[Xi Luo]的文章 |
[Wei Yang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yingliang Zhang]的文章 |
[Xi Luo]的文章 |
[Wei Yang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yingliang Zhang]的文章 |
[Xi Luo]的文章 |
[Wei Yang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。