ShanghaiTech University Knowledge Management System
PDD: Partitioning DAG-Topology DNNs for Streaming Tasks | |
2023 | |
发表期刊 | IEEE INTERNET OF THINGS JOURNAL (IF:8.2[JCR-2023],9.0[5-Year]) |
ISSN | 2372-2541 |
EISSN | 2327-4662 |
卷号 | PP期号:99页码:1-1 |
发表状态 | 已发表 |
DOI | 10.1109/JIOT.2023.3323520 |
摘要 | To enable the inference of high-precision deep neural networks (DNNs) on resource-constrained devices, DNN offloading has been widely explored in recent years. Some works have also integrated the chain-topology DNN offloading with pipeline processing to further reduce inference delay when processing streaming tasks. To improve the accuracy of the inference results, the topology of DNN tends to evolve from chain topology to directed acyclic graph (DAG) topology. However, most of the existing works do not study partitioning and offloading DAG-topology DNNs (DDNNs) for streaming tasks. Moreover, when partitioning computationally expensive DNN models, multi-partitioning probably outperforms the bi-partitioning method, and most of the works do not study multi-partitioning DAG-topology DNNs. In this paper, we propose a more general multi-partitioning and offloading method for large-scale DDNNs to process streaming tasks, which can adaptively partition DDNNs into multiple parts considering the computing power and bandwidth of all available computing units. Specifically, we first present a transforming method based on topological sorting that can losslessly transform DAG-topology DNNs into chain-topology DNNs (CDNNs). Then, based on greedy and dichotomy ideas, a multi-partitioning algorithm is designed to partition and offload CDNNs. In this way, we can solve DDNNs’ multi-partitioning problem based on the proposed transforming and partitioning algorithms. Experiments show that the method proposed in this paper significantly outperforms bi-partitioning and non-partitioning methods when offloading computationally expensive DNN models. IEEE |
关键词 | DNN partitioning streaming tasks DAG topology |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20234314970933 |
EI主题词 | Directed graphs |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 544.1 Copper ; 722.2 Computer Peripheral Equipment ; 722.4 Digital Computers and Systems ; 723 Computer Software, Data Handling and Applications ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/340943 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 |
作者单位 | 1.the Shanghai Key Laboratory of Trustworthy Computing, Software Engineering Institute, East China Normal University, Shanghai, China 2.the Shanghai Institute of Microsystem and Information Technology, School of Information Science and Technology, ShanghaiTech University, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China 3.IoT Thrust at the Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China 4.State Key Laboratory of Maritime Technology and Safety, and School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, China |
推荐引用方式 GB/T 7714 | Liantao Wu,Guoliang Gao,Jing Yu,et al. PDD: Partitioning DAG-Topology DNNs for Streaming Tasks[J]. IEEE INTERNET OF THINGS JOURNAL,2023,PP(99):1-1. |
APA | Liantao Wu,Guoliang Gao,Jing Yu,Fangtong Zhou,Yang Yang,&Tengfei Wang.(2023).PDD: Partitioning DAG-Topology DNNs for Streaming Tasks.IEEE INTERNET OF THINGS JOURNAL,PP(99),1-1. |
MLA | Liantao Wu,et al."PDD: Partitioning DAG-Topology DNNs for Streaming Tasks".IEEE INTERNET OF THINGS JOURNAL PP.99(2023):1-1. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liantao Wu]的文章 |
[Guoliang Gao]的文章 |
[Jing Yu]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liantao Wu]的文章 |
[Guoliang Gao]的文章 |
[Jing Yu]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liantao Wu]的文章 |
[Guoliang Gao]的文章 |
[Jing Yu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。