ShanghaiTech University Knowledge Management System
Deciphering the functional landscape of phosphosites with deep neural network | |
2023-09-26 | |
发表期刊 | CELL REPORTS (IF:7.5[JCR-2023],8.5[5-Year]) |
ISSN | 2211-1247 |
卷号 | 42期号:9 |
发表状态 | 已发表 |
DOI | 10.1016/j.celrep.2023.113048 |
摘要 | Current biochemical approaches have only identified the most well-characterized kinases for a tiny fraction of the phosphoproteome, and the functional assignments of phosphosites are almost negligible. Herein, we analyze the substrate preference catalyzed by a specific kinase and present a novel integrated deep neural network model named FuncPhos-SEQ for functional assignment of human proteome-level phosphosites. FuncPhos-SEQ incorporates phosphosite motif information from a protein sequence using multiple convolutional neural network (CNN) channels and network features from protein-protein interactions (PPIs) using network embedding and deep neural network (DNN) channels. These concatenated features are jointly fed into a heterogeneous feature network to prioritize functional phosphosites. Combined with a series of in vitro and cellular biochemical assays, we confirm that NADK-S48/50 phosphorylation could activate its enzymatic activity. In addition, ERK1/2 are discovered as the primary kinases responsible for NADK-S48/ 50 phosphorylation. Moreover, FuncPhos-SEQ is developed as an online server. |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Centre for Protein Science Shanghai (Protein Expression and Purification system) - National Key Ramp ; D Program of China[ |
WOS研究方向 | Cell Biology |
WOS类目 | Cell Biology |
WOS记录号 | WOS:001071972700001 |
出版者 | CELL PRESS |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/337725 |
专题 | 生命科学与技术学院 |
通讯作者 | Zhu, Fei; Luo, Cheng |
作者单位 | 1.Soochow Univ, Ctr Syst Biol, Sch Biol & Basic Med Sci, Dept Bioinformat, Suzhou 215123, Peoples R China 2.Chinese Acad Sci, Zhongshan Inst Drug Discovery, Shanghai Inst Mat Med, Zhongshan 528437, Peoples R China 3.Chinese Acad Sci, Shanghai Inst Mat Med, State Key Lab Drug Res, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China 4.Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China 5.UCAS, Hangzhou Inst Adv Study, Sch Pharmaceut Sci & Technol, Hangzhou 310024, Peoples R China 6.Shanghai Tech Univ, Sch Life Sci & Technol, 100 Haike Rd, Shanghai 201210, Peoples R China 7.Fujian Med Univ, Sch Pharm, Fuzhou 350122, Peoples R China 8.Soochow Univ, Jiangsu Prov Engn Res Ctr Precis Diagnost & Therap, Suzhou 215123, Peoples R China |
通讯作者单位 | 生命科学与技术学院 |
推荐引用方式 GB/T 7714 | Liang, Zhongjie,Liu, Tonghai,Li, Qi,et al. Deciphering the functional landscape of phosphosites with deep neural network[J]. CELL REPORTS,2023,42(9). |
APA | Liang, Zhongjie.,Liu, Tonghai.,Li, Qi.,Zhang, Guangyu.,Zhang, Bei.,...&Luo, Cheng.(2023).Deciphering the functional landscape of phosphosites with deep neural network.CELL REPORTS,42(9). |
MLA | Liang, Zhongjie,et al."Deciphering the functional landscape of phosphosites with deep neural network".CELL REPORTS 42.9(2023). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。