Deciphering the functional landscape of phosphosites with deep neural network
2023-09-26
发表期刊CELL REPORTS (IF:7.5[JCR-2023],8.5[5-Year])
ISSN2211-1247
卷号42期号:9
发表状态已发表
DOI10.1016/j.celrep.2023.113048
摘要

Current biochemical approaches have only identified the most well-characterized kinases for a tiny fraction of the phosphoproteome, and the functional assignments of phosphosites are almost negligible. Herein, we analyze the substrate preference catalyzed by a specific kinase and present a novel integrated deep neural network model named FuncPhos-SEQ for functional assignment of human proteome-level phosphosites. FuncPhos-SEQ incorporates phosphosite motif information from a protein sequence using multiple convolutional neural network (CNN) channels and network features from protein-protein interactions (PPIs) using network embedding and deep neural network (DNN) channels. These concatenated features are jointly fed into a heterogeneous feature network to prioritize functional phosphosites. Combined with a series of in vitro and cellular biochemical assays, we confirm that NADK-S48/50 phosphorylation could activate its enzymatic activity. In addition, ERK1/2 are discovered as the primary kinases responsible for NADK-S48/ 50 phosphorylation. Moreover, FuncPhos-SEQ is developed as an online server.

URL查看原文
收录类别SCI
语种英语
资助项目National Centre for Protein Science Shanghai (Protein Expression and Purification system) - National Key Ramp ; D Program of China[
WOS研究方向Cell Biology
WOS类目Cell Biology
WOS记录号WOS:001071972700001
出版者CELL PRESS
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/337725
专题生命科学与技术学院
通讯作者Zhu, Fei; Luo, Cheng
作者单位
1.Soochow Univ, Ctr Syst Biol, Sch Biol & Basic Med Sci, Dept Bioinformat, Suzhou 215123, Peoples R China
2.Chinese Acad Sci, Zhongshan Inst Drug Discovery, Shanghai Inst Mat Med, Zhongshan 528437, Peoples R China
3.Chinese Acad Sci, Shanghai Inst Mat Med, State Key Lab Drug Res, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China
4.Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
5.UCAS, Hangzhou Inst Adv Study, Sch Pharmaceut Sci & Technol, Hangzhou 310024, Peoples R China
6.Shanghai Tech Univ, Sch Life Sci & Technol, 100 Haike Rd, Shanghai 201210, Peoples R China
7.Fujian Med Univ, Sch Pharm, Fuzhou 350122, Peoples R China
8.Soochow Univ, Jiangsu Prov Engn Res Ctr Precis Diagnost & Therap, Suzhou 215123, Peoples R China
通讯作者单位生命科学与技术学院
推荐引用方式
GB/T 7714
Liang, Zhongjie,Liu, Tonghai,Li, Qi,et al. Deciphering the functional landscape of phosphosites with deep neural network[J]. CELL REPORTS,2023,42(9).
APA Liang, Zhongjie.,Liu, Tonghai.,Li, Qi.,Zhang, Guangyu.,Zhang, Bei.,...&Luo, Cheng.(2023).Deciphering the functional landscape of phosphosites with deep neural network.CELL REPORTS,42(9).
MLA Liang, Zhongjie,et al."Deciphering the functional landscape of phosphosites with deep neural network".CELL REPORTS 42.9(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liang, Zhongjie]的文章
[Liu, Tonghai]的文章
[Li, Qi]的文章
百度学术
百度学术中相似的文章
[Liang, Zhongjie]的文章
[Liu, Tonghai]的文章
[Li, Qi]的文章
必应学术
必应学术中相似的文章
[Liang, Zhongjie]的文章
[Liu, Tonghai]的文章
[Li, Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。