Robust embedding regression for semi-supervised learning
2024-01
发表期刊PATTERN RECOGNITION (IF:7.5[JCR-2023],7.6[5-Year])
ISSN0031-3203
EISSN1873-5142
卷号145
发表状态已发表
DOI10.1016/j.patcog.2023.109894
摘要

To utilize both labeled data and unlabeled data in real-world applications, semi-supervised learning is widely used as an effective technique. However, most semi-supervised methods do not perform well when there are many noises and redundant information in the original data. To address these issues, in this paper, we proposed a novel approach called robust embedding regression (RER) for semi-supervised learning by inheriting the advantages of the existing semi-supervised learning, robust linear regression, and low-rank representation techniques. Specifically, RER constructs a more robust and accurate graph by adaptively arranging the weight coefficient for each data point. Furthermore, the low-rank representation is introduced to reduce the negative influence of the redundant features and noises residing in the original data while the graph construction. More importantly, the proper norms are imposed on both the reconstruction and regularization terms to further improve the robustness and earn feature/sample selection. We designed an effective iterative algorithm to optimize the problem of RER. Comprehensive experimental results conducted on both synthetic and real-world datasets indicate that RER is superior in classification and clustering performance and robust to different types of noise compared with the existing semi-supervised methods. © 2023 Elsevier Ltd

关键词Classification (of information) Feature Selection Iterative methods Regression analysis Embeddings Features selection Labeled data Low-rank representations Nuclear norm Real-world Ridge regression Semi-supervised learning Semi-supervised method Unlabeled data
URL查看原文
收录类别EI ; SCI
语种英语
资助项目JSPS KAKENHI, Japan[19H04128]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:001079742700001
出版者Elsevier Ltd
EI入藏号20233714702584
EI主题词Embeddings
EI分类号716.1 Information Theory and Signal Processing ; 723.4 Artificial Intelligence ; 903.1 Information Sources and Analysis ; 921.6 Numerical Methods ; 922.2 Mathematical Statistics
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/335577
专题信息科学与技术学院
信息科学与技术学院_PI研究组_孙露组
通讯作者Bao, Jiaqi
作者单位
1.Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
2.Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Bao, Jiaqi,Kudo, Mineichi,Kimura, Keigo,et al. Robust embedding regression for semi-supervised learning[J]. PATTERN RECOGNITION,2024,145.
APA Bao, Jiaqi,Kudo, Mineichi,Kimura, Keigo,&Sun, Lu.(2024).Robust embedding regression for semi-supervised learning.PATTERN RECOGNITION,145.
MLA Bao, Jiaqi,et al."Robust embedding regression for semi-supervised learning".PATTERN RECOGNITION 145(2024).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Bao, Jiaqi]的文章
[Kudo, Mineichi]的文章
[Kimura, Keigo]的文章
百度学术
百度学术中相似的文章
[Bao, Jiaqi]的文章
[Kudo, Mineichi]的文章
[Kimura, Keigo]的文章
必应学术
必应学术中相似的文章
[Bao, Jiaqi]的文章
[Kudo, Mineichi]的文章
[Kimura, Keigo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。