Oscillation Damping Using Reinforcement Learning Controlled HVDC Transmission
2023-05-22
会议录名称2023 IEEE PES GTD INTERNATIONAL CONFERENCE AND EXPOSITION (GTD)
页码67-71
发表状态已发表
DOI10.1109/GTD49768.2023.00039
摘要This paper presents a novel deep reinforcement learning based control method for damping power system inter-Area oscillations. A guided surrogate-gradient-based evolutionary strategy (GSES) is used to control the transferred power on high voltage DC (HVDC) transmissions, which could help improve the damping effect when inter-Area oscillations occur. The GSES algorithm trains a reinforcement learning agent to learn the best parameters of the HVDC controller, with an objective of reducing the magnitude and duration of inter-Area oscillations. Unlike many existing reinforcement learning methods, the GSES algorithm does not require a traditional back-propagation process to update the policy parameters, enabling an easier, more robust and efficient training procedure with less required hyper-parameters. In addition, as an evolutionary strategy, the proposed GSES-based HVDC oscillation damping control approach can engage with multiple individual workers during the training process through parallel computation techniques, which significantly accelerates the computational speed and improves the training efficiency. The proposed GSES-based HVDC controller is compared with a conventional oscillation damping method on the IEEE 39-Bus New England system. Results indicate that the proposed GSES-based HVDC control approach performs better and it can effectively damp power system inter-Area oscillations. © 2023 IEEE.
会议录编者/会议主办者EnerjiSA ; IEEE PES ; Omicron Bahrain ; SEL
关键词High voltage DC transmission inter-area oscillation deep reinforcement learning transient stability
会议名称2023 IEEE PES Generation, Transmission and Distribution International Conference and Exposition, GTD 2023
会议地点Istanbul, Turkiye
会议日期22-25 May 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20234515012042
EI主题词HVDC power transmission
EI分类号461.4 Ergonomics and Human Factors Engineering ; 703.1 Electric Networks ; 706.1 Electric Power Systems ; 706.1.1 Electric Power Transmission ; 723.4 Artificial Intelligence ; 723.4.2 Machine Learning ; 731.2 Control System Applications ; 732.1 Control Equipment ; 931.1 Mechanics
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333542
专题信息科学与技术学院_PI研究组_刘宇组
作者单位
1.University of Denver, Denver, USA
2.Shanghai Jiaotong University, Shanghai, China
3.Colorado School of Mines, Golden, USA
4.Google, Mountain View, USA
5.ShanghaiTech University, Shanghai, China
推荐引用方式
GB/T 7714
Rui Fan,Renke Huang,Qiuhua Huang,et al. Oscillation Damping Using Reinforcement Learning Controlled HVDC Transmission[C]//EnerjiSA, IEEE PES, Omicron Bahrain, SEL:Institute of Electrical and Electronics Engineers Inc.,2023:67-71.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Rui Fan]的文章
[Renke Huang]的文章
[Qiuhua Huang]的文章
百度学术
百度学术中相似的文章
[Rui Fan]的文章
[Renke Huang]的文章
[Qiuhua Huang]的文章
必应学术
必应学术中相似的文章
[Rui Fan]的文章
[Renke Huang]的文章
[Qiuhua Huang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。