消息
×
loading..
SCAGuard: Detection and Classification of Cache Side-Channel Attacks via Attack Behavior Modeling and Similarity Comparison
2023-07-09
会议录名称2023 60TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC)
ISSN0738-100X
卷号2023-July
发表状态已发表
DOI10.1109/DAC56929.2023.10247890
摘要Cache side-channel attacks (CSCAs), capable of deducing secrets by analyzing timing differences in the shared cache behavior of modern processors, pose a serious security threat. While there are approaches for detecting CSCAs and mitigating information leaks, they either fail to detect and classify new variants or have to impractically update deployed systems (e.g., CPU). In this work, we propose a novel approach, named SCAGuard, to detect and classify CSCAs via attack behavior modeling and similarity comparison. Specifically, we introduce the notion of cache state transition enhanced basic block sequences (CST-BBSes) to model attack behaviors which is able to capture both attack-relevant syntactic code information and semantic cache information. We propose an approach to automatically construct CST-BBS models from binary programs. To detect and classify attacks, we adapt a dynamic time warping algorithm to compare the similarity of CST-BBSes between attack and target programs. We implement our approach in a tool SCAGuard and evaluate it using real-world attacks and diverse benign programs. The results confirm the effectiveness of our approach, compared over existing detection approaches. In particular, SCAGuard significantly outperforms the other detection approaches on new variants. © 2023 IEEE.
关键词Adaptation models Codes Program processors Heuristic algorithms Semantics Side-channel attacks Syntactics
会议名称60th ACM/IEEE Design Automation Conference, DAC 2023
会议地点San Francisco, CA, USA
会议日期9-13 July 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20234014844404
EI主题词Side channel attack
EI分类号716.1 Information Theory and Signal Processing ; 903.1 Information Sources and Analysis
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333451
专题信息科学与技术学院
信息科学与技术学院_PI研究组_宋富组
作者单位
1.State Key Laboratory of Novel Software Techniques, Nanjing University, Nanjing, China
2.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
推荐引用方式
GB/T 7714
Limin Wang,Lei Bu,Fu Song. SCAGuard: Detection and Classification of Cache Side-Channel Attacks via Attack Behavior Modeling and Similarity Comparison[C]:Institute of Electrical and Electronics Engineers Inc.,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Limin Wang]的文章
[Lei Bu]的文章
[Fu Song]的文章
百度学术
百度学术中相似的文章
[Limin Wang]的文章
[Lei Bu]的文章
[Fu Song]的文章
必应学术
必应学术中相似的文章
[Limin Wang]的文章
[Lei Bu]的文章
[Fu Song]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。