Multi-Scale Supervised Contrastive Learning for Benign-Malignant Classification of Pulmonary Nodules in Chest Ct Scans
2023-04-18
会议录名称2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
ISSN1945-7928
卷号2023-April
发表状态已发表
DOI10.1109/ISBI53787.2023.10230567
摘要

Early identification of malignant pulmonary nodules is of great interest in the lung cancer screening process. However, the surrounding contextual information is usually complex, but could be better preserved in multiple spatial scales. Hence, we propose a multi-scale supervised contrastive learning framework to effectively extract inter-scale and intra-scale contextual information of nodules. First, we employ three hierarchical scales from a 3D CT scan to obtain representations, respectively. Second, a newly designed projection network is used to extract pairwise features and map them to the latent space. Third, a supervised contrastive loss is further applied to pull nodules of same classes closer while push nodules of different classes much more away, which effectively guarantees consistency and also augments performance. Based on 1,226 nodules (benign/malignant: 556/670), our proposed method achieves superior diagnosis performance with an accuracy of 91.8%, and AUC of 96.1%. The proposed method shows its potential for computer-assisted lung cancer diagnosis on CT images. © 2023 IEEE.

会议录编者/会议主办者Flywheel ; Kitware ; Siemens Healthineers ; UCLouvain
关键词Multi-scale Learning Supervised Contrastive Learning Computed Tomography Pulmonary Nodule Classification
会议名称20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Cartagena, Colombia
会议日期18-21 April 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Science and Technology Innovation[2021ZD0111103]
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001062050500244
出版者IEEE Computer Society
EI入藏号20233914806065
EI主题词Computerized tomography
EISSN1945-8452
EI分类号461.1 Biomedical Engineering ; 461.2 Biological Materials and Tissue Engineering ; 723.5 Computer Applications ; 746 Imaging Techniques
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333435
专题生物医学工程学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_郑杰组
生物医学工程学院_PI研究组_沈定刚组
通讯作者Shi, Feng; Shen, Dinggang
作者单位
1.Shanghai United Imaging Intelligence Co Ltd, Shanghai 200232, Peoples R China
2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
3.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai 201210, Peoples R China
4.Zhejiang Univ, Hangzhou First Peoples Hosp, Sch Med, Hangzhou 310006, Zhejiang, Peoples R China
5.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
推荐引用方式
GB/T 7714
Xu, Xiaoxian,Wei, Ying,Zheng, Jie,et al. Multi-Scale Supervised Contrastive Learning for Benign-Malignant Classification of Pulmonary Nodules in Chest Ct Scans[C]//Flywheel, Kitware, Siemens Healthineers, UCLouvain. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Xiaoxian]的文章
[Wei, Ying]的文章
[Zheng, Jie]的文章
百度学术
百度学术中相似的文章
[Xu, Xiaoxian]的文章
[Wei, Ying]的文章
[Zheng, Jie]的文章
必应学术
必应学术中相似的文章
[Xu, Xiaoxian]的文章
[Wei, Ying]的文章
[Zheng, Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。