ShanghaiTech University Knowledge Management System
Multi-Scale Supervised Contrastive Learning for Benign-Malignant Classification of Pulmonary Nodules in Chest Ct Scans | |
2023-04-18 | |
会议录名称 | 2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
![]() |
ISSN | 1945-7928 |
卷号 | 2023-April |
发表状态 | 已发表 |
DOI | 10.1109/ISBI53787.2023.10230567 |
摘要 | Early identification of malignant pulmonary nodules is of great interest in the lung cancer screening process. However, the surrounding contextual information is usually complex, but could be better preserved in multiple spatial scales. Hence, we propose a multi-scale supervised contrastive learning framework to effectively extract inter-scale and intra-scale contextual information of nodules. First, we employ three hierarchical scales from a 3D CT scan to obtain representations, respectively. Second, a newly designed projection network is used to extract pairwise features and map them to the latent space. Third, a supervised contrastive loss is further applied to pull nodules of same classes closer while push nodules of different classes much more away, which effectively guarantees consistency and also augments performance. Based on 1,226 nodules (benign/malignant: 556/670), our proposed method achieves superior diagnosis performance with an accuracy of 91.8%, and AUC of 96.1%. The proposed method shows its potential for computer-assisted lung cancer diagnosis on CT images. © 2023 IEEE. |
会议录编者/会议主办者 | Flywheel ; Kitware ; Siemens Healthineers ; UCLouvain |
关键词 | Multi-scale Learning Supervised Contrastive Learning Computed Tomography Pulmonary Nodule Classification |
会议名称 | 20th IEEE International Symposium on Biomedical Imaging, ISBI 2023 |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | Cartagena, Colombia |
会议日期 | 18-21 April 2023 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Science and Technology Innovation[2021ZD0111103] |
WOS研究方向 | Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001062050500244 |
出版者 | IEEE Computer Society |
EI入藏号 | 20233914806065 |
EI主题词 | Computerized tomography |
EISSN | 1945-8452 |
EI分类号 | 461.1 Biomedical Engineering ; 461.2 Biological Materials and Tissue Engineering ; 723.5 Computer Applications ; 746 Imaging Techniques |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333435 |
专题 | 生物医学工程学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_郑杰组 生物医学工程学院_PI研究组_沈定刚组 |
通讯作者 | Shi, Feng; Shen, Dinggang |
作者单位 | 1.Shanghai United Imaging Intelligence Co Ltd, Shanghai 200232, Peoples R China 2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China 3.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai 201210, Peoples R China 4.Zhejiang Univ, Hangzhou First Peoples Hosp, Sch Med, Hangzhou 310006, Zhejiang, Peoples R China 5.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Xu, Xiaoxian,Wei, Ying,Zheng, Jie,et al. Multi-Scale Supervised Contrastive Learning for Benign-Malignant Classification of Pulmonary Nodules in Chest Ct Scans[C]//Flywheel, Kitware, Siemens Healthineers, UCLouvain. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。