消息
×
loading..
Learning Hierarchical-Order Functional Connectivity Networks for Mild Cognitive Impairment Diagnosis
2023-04-18
会议录名称2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
ISSN1945-7928
卷号2023-April
发表状态已发表
DOI10.1109/ISBI53787.2023.10230532
摘要

Functional connectivity network (FCN) extracted from resting-state fMRI has been widely used for brain disease diagnosis. However, previous FCN-based studies have at least two limitations: 1) The FCN construction procedure is often handcrafted and not optimized for diagnosis tasks; 2) The connectivity is limited to be pair-wise (low-order) and not to capture high-order collective interactions between groups of brain regions. Accordingly, we propose a unified framework to learn both low- and high-order diseased-related FCNs. First, an encoder is designed to extract disease-related features from fMRI signals, based on which disease-related low-order FCN (D-LOFCN, order k = 1) is built. Then, by correlating disease-related correlation profiles from D-LOFCN by the graph attention mechanism, we iteratively construct the disease-related high-order FCNs (D-HOFCNs) at k-order (k > 1). Finally, both D-LOFCN and D-HOFCNs are forwarded into corresponding GNNs for producing the diagnosis. The experiments demonstrate that our method has higher performance over other state-of-the-art methods on mild cognitive impairment diagnosis task. © 2023 IEEE.

会议录编者/会议主办者Flywheel ; Kitware ; Siemens Healthineers ; UCLouvain
关键词Functional magnetic resonance imaging mild cognitive impairment function connectivity
会议名称20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Cartagena, Colombia
会议日期18-21 April 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China[62131015] ; Science and Technology Commission of Shanghai Municipality (STCSM)[21010502600] ; Key R&D Program of Guangdong Province, China[2021B0101420006]
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001062050500209
出版者IEEE Computer Society
EI入藏号20233914806030
EI主题词Diagnosis
EISSN1945-8452
EI分类号461.1 Biomedical Engineering ; 461.6 Medicine and Pharmacology ; 701.2 Magnetism: Basic Concepts and Phenomena ; 746 Imaging Techniques ; 921.6 Numerical Methods
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333433
专题生物医学工程学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
生物医学工程学院_PI研究组_沈定刚组
通讯作者Liu, Yuxiao
作者单位
1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
2.Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China
3.Shanghai United Imaging Intelligence Co Ltd, Shanghai 200232, Peoples R China
4.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Liu, Yuxiao,Liu, Mianxin,Zhang, Yuanwang,et al. Learning Hierarchical-Order Functional Connectivity Networks for Mild Cognitive Impairment Diagnosis[C]//Flywheel, Kitware, Siemens Healthineers, UCLouvain. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Yuxiao]的文章
[Liu, Mianxin]的文章
[Zhang, Yuanwang]的文章
百度学术
百度学术中相似的文章
[Liu, Yuxiao]的文章
[Liu, Mianxin]的文章
[Zhang, Yuanwang]的文章
必应学术
必应学术中相似的文章
[Liu, Yuxiao]的文章
[Liu, Mianxin]的文章
[Zhang, Yuanwang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。