| |||||||
ShanghaiTech University Knowledge Management System
Learning Hierarchical-Order Functional Connectivity Networks for Mild Cognitive Impairment Diagnosis | |
2023-04-18 | |
会议录名称 | 2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
![]() |
ISSN | 1945-7928 |
卷号 | 2023-April |
发表状态 | 已发表 |
DOI | 10.1109/ISBI53787.2023.10230532 |
摘要 | Functional connectivity network (FCN) extracted from resting-state fMRI has been widely used for brain disease diagnosis. However, previous FCN-based studies have at least two limitations: 1) The FCN construction procedure is often handcrafted and not optimized for diagnosis tasks; 2) The connectivity is limited to be pair-wise (low-order) and not to capture high-order collective interactions between groups of brain regions. Accordingly, we propose a unified framework to learn both low- and high-order diseased-related FCNs. First, an encoder is designed to extract disease-related features from fMRI signals, based on which disease-related low-order FCN (D-LOFCN, order k = 1) is built. Then, by correlating disease-related correlation profiles from D-LOFCN by the graph attention mechanism, we iteratively construct the disease-related high-order FCNs (D-HOFCNs) at k-order (k > 1). Finally, both D-LOFCN and D-HOFCNs are forwarded into corresponding GNNs for producing the diagnosis. The experiments demonstrate that our method has higher performance over other state-of-the-art methods on mild cognitive impairment diagnosis task. © 2023 IEEE. |
会议录编者/会议主办者 | Flywheel ; Kitware ; Siemens Healthineers ; UCLouvain |
关键词 | Functional magnetic resonance imaging mild cognitive impairment function connectivity |
会议名称 | 20th IEEE International Symposium on Biomedical Imaging, ISBI 2023 |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | Cartagena, Colombia |
会议日期 | 18-21 April 2023 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[62131015] ; Science and Technology Commission of Shanghai Municipality (STCSM)[21010502600] ; Key R&D Program of Guangdong Province, China[2021B0101420006] |
WOS研究方向 | Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001062050500209 |
出版者 | IEEE Computer Society |
EI入藏号 | 20233914806030 |
EI主题词 | Diagnosis |
EISSN | 1945-8452 |
EI分类号 | 461.1 Biomedical Engineering ; 461.6 Medicine and Pharmacology ; 701.2 Magnetism: Basic Concepts and Phenomena ; 746 Imaging Techniques ; 921.6 Numerical Methods |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333433 |
专题 | 生物医学工程学院 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_沈定刚组 |
通讯作者 | Liu, Yuxiao |
作者单位 | 1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China 2.Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China 3.Shanghai United Imaging Intelligence Co Ltd, Shanghai 200232, Peoples R China 4.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Liu, Yuxiao,Liu, Mianxin,Zhang, Yuanwang,et al. Learning Hierarchical-Order Functional Connectivity Networks for Mild Cognitive Impairment Diagnosis[C]//Flywheel, Kitware, Siemens Healthineers, UCLouvain. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。