ASSURED: A Self-Supervised Deep Decoder Network for Fetus Brain MRI Reconstruction
2023-04-18
会议录名称2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
ISSN1945-7928
卷号2023-April
发表状态已发表
DOI10.1109/ISBI53787.2023.10230366
摘要

High-resolution Magnetic Resonance Imaging (MRI) volume reconstruction from multiple arbitrary orientation motion-corrupted 2D slices is crucial for fetal brain MRI studies. Currently, most existing methods follow two-step approaches that iteratively perform slice to volume registration (SVR) and super-resolution reconstruction (SRR). However, the 3D volume reconstruction is often corrupted due to slice misalignment and brain anatomy blurring caused by severe motion during MR data collection, making the quantification challenging. To tackle these issues, we propose a novel learning-based self-supervised volume reconstruction technique that is robust to slice misalignment and motion artifacts. Specially, we combine a comprehensive forward model to present the complex image degradation process and an under-parameterized deep decoder structure to reduce the network overfitting with image artifacts caused by slice misalignment and motion. This methodology requires only one coarse SVR step in the whole reconstruction process and does not need any training dataset in SRR. We evaluated the performance of our technique on simulated MRI from brain atlas and on real clinical scanning fetus MR data. Experimental results demonstrated that the proposed approach achieved superior fetus brain reconstruction results compared with state-of-the-art methods. © 2023 IEEE.

会议录编者/会议主办者Flywheel ; Kitware ; Siemens Healthineers ; UCLouvain
关键词Fetal MRI Self-Supervised Learning 3D MRI reconstruction
会议名称20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Cartagena, Colombia
会议日期18-21 April 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China["62071299","61901256","91949120"]
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001062050500044
出版者IEEE Computer Society
EI入藏号20233914806464
EI主题词Magnetic resonance imaging
EISSN1945-8452
EI分类号461.4 Ergonomics and Human Factors Engineering ; 601.1 Mechanical Devices ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.2 Data Processing and Image Processing ; 746 Imaging Techniques ; 921.6 Numerical Methods
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333430
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_张玉瑶组
通讯作者Zhang, Yuyao
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai, Peoples R China
3.Guizhou Univ, Sch Comp Sci & Technol, Guiyang, Peoples R China
4.Guizhou Prov Peoples Hosp, Guiyang, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Wu, Jiangjie,Chen, Lixuan,Li, Zhenghao,et al. ASSURED: A Self-Supervised Deep Decoder Network for Fetus Brain MRI Reconstruction[C]//Flywheel, Kitware, Siemens Healthineers, UCLouvain. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wu, Jiangjie]的文章
[Chen, Lixuan]的文章
[Li, Zhenghao]的文章
百度学术
百度学术中相似的文章
[Wu, Jiangjie]的文章
[Chen, Lixuan]的文章
[Li, Zhenghao]的文章
必应学术
必应学术中相似的文章
[Wu, Jiangjie]的文章
[Chen, Lixuan]的文章
[Li, Zhenghao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。