ShanghaiTech University Knowledge Management System
ASSURED: A Self-Supervised Deep Decoder Network for Fetus Brain MRI Reconstruction | |
2023-04-18 | |
会议录名称 | 2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
![]() |
ISSN | 1945-7928 |
卷号 | 2023-April |
发表状态 | 已发表 |
DOI | 10.1109/ISBI53787.2023.10230366 |
摘要 | High-resolution Magnetic Resonance Imaging (MRI) volume reconstruction from multiple arbitrary orientation motion-corrupted 2D slices is crucial for fetal brain MRI studies. Currently, most existing methods follow two-step approaches that iteratively perform slice to volume registration (SVR) and super-resolution reconstruction (SRR). However, the 3D volume reconstruction is often corrupted due to slice misalignment and brain anatomy blurring caused by severe motion during MR data collection, making the quantification challenging. To tackle these issues, we propose a novel learning-based self-supervised volume reconstruction technique that is robust to slice misalignment and motion artifacts. Specially, we combine a comprehensive forward model to present the complex image degradation process and an under-parameterized deep decoder structure to reduce the network overfitting with image artifacts caused by slice misalignment and motion. This methodology requires only one coarse SVR step in the whole reconstruction process and does not need any training dataset in SRR. We evaluated the performance of our technique on simulated MRI from brain atlas and on real clinical scanning fetus MR data. Experimental results demonstrated that the proposed approach achieved superior fetus brain reconstruction results compared with state-of-the-art methods. © 2023 IEEE. |
会议录编者/会议主办者 | Flywheel ; Kitware ; Siemens Healthineers ; UCLouvain |
关键词 | Fetal MRI Self-Supervised Learning 3D MRI reconstruction |
会议名称 | 20th IEEE International Symposium on Biomedical Imaging, ISBI 2023 |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | Cartagena, Colombia |
会议日期 | 18-21 April 2023 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China["62071299","61901256","91949120"] |
WOS研究方向 | Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001062050500044 |
出版者 | IEEE Computer Society |
EI入藏号 | 20233914806464 |
EI主题词 | Magnetic resonance imaging |
EISSN | 1945-8452 |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 601.1 Mechanical Devices ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.2 Data Processing and Image Processing ; 746 Imaging Techniques ; 921.6 Numerical Methods |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333430 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_张玉瑶组 |
通讯作者 | Zhang, Yuyao |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai, Peoples R China 3.Guizhou Univ, Sch Comp Sci & Technol, Guiyang, Peoples R China 4.Guizhou Prov Peoples Hosp, Guiyang, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wu, Jiangjie,Chen, Lixuan,Li, Zhenghao,et al. ASSURED: A Self-Supervised Deep Decoder Network for Fetus Brain MRI Reconstruction[C]//Flywheel, Kitware, Siemens Healthineers, UCLouvain. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。