Relightable Neural Human Assets from Multi-view Gradient Illuminations
2023-06-17
会议录名称2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
ISSN1063-6919
卷号2023-June
页码4315-4327
发表状态已发表
DOI10.1109/CVPR52729.2023.00420
摘要Human modeling and relighting are two fundamental problems in computer vision and graphics, where high-quality datasets can largely facilitate related research. However, most existing human datasets only provide multi-view human images captured under the same illumination. Although valuable for modeling tasks, they are not read-ily used in relighting problems. To promote research in both fields, in this paper, we present UltraStage, a new 3D human dataset that contains more than 2, 000 high-quality human assets captured under both multi-view and multi-illumination settings. Specifically, for each example, we provide 32 surrounding views illuminated with one white light and two gradient illuminations. In addition to regular multi-view images, gradient illuminations help recover de-tailed surface normal and spatially-varying material maps, enabling various relighting applications. Inspired by recent advances in neural representation, we further interpret each example into a neural human asset which allows novel view synthesis under arbitrary lighting conditions. We show our neural human assets can achieve extremely high capture performance and are capable of representing fine details such as facial wrinkles and cloth folds. We also validate UltraStage in single image relighting tasks, training neural networks with virtual relighted data from neural assets and demonstrating realistic rendering improvements over prior arts. UltraStage will be publicly available to the community to stimulate significant future developments in various human modeling and rendering tasks. The dataset is available at https://miaoing.github.io/RNHA. © 2023 IEEE.
会议录编者/会议主办者Amazon Science ; Ant Research ; Cruise ; et al. ; Google ; Lambda
关键词Humans: Face body pose gesture movement
会议名称2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
会议地点Vancouver, BC, Canada
会议日期17-24 June 2023
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20234114868061
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333408
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_本科生
信息科学与技术学院_PI研究组_许岚组
共同第一作者Kai He; Di Wu
通讯作者Jingyi Yu
作者单位
1.ShanghaiTech University
2.University of Toronto
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Taotao Zhou,Kai He,Di Wu,et al. Relightable Neural Human Assets from Multi-view Gradient Illuminations[C]//Amazon Science, Ant Research, Cruise, et al., Google, Lambda:IEEE Computer Society,2023:4315-4327.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Taotao Zhou]的文章
[Kai He]的文章
[Di Wu]的文章
百度学术
百度学术中相似的文章
[Taotao Zhou]的文章
[Kai He]的文章
[Di Wu]的文章
必应学术
必应学术中相似的文章
[Taotao Zhou]的文章
[Kai He]的文章
[Di Wu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。