ShanghaiTech University Knowledge Management System
Relightable Neural Human Assets from Multi-view Gradient Illuminations | |
2023-06-17 | |
会议录名称 | 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
![]() |
ISSN | 1063-6919 |
卷号 | 2023-June |
页码 | 4315-4327 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR52729.2023.00420 |
摘要 | Human modeling and relighting are two fundamental problems in computer vision and graphics, where high-quality datasets can largely facilitate related research. However, most existing human datasets only provide multi-view human images captured under the same illumination. Although valuable for modeling tasks, they are not read-ily used in relighting problems. To promote research in both fields, in this paper, we present UltraStage, a new 3D human dataset that contains more than 2, 000 high-quality human assets captured under both multi-view and multi-illumination settings. Specifically, for each example, we provide 32 surrounding views illuminated with one white light and two gradient illuminations. In addition to regular multi-view images, gradient illuminations help recover de-tailed surface normal and spatially-varying material maps, enabling various relighting applications. Inspired by recent advances in neural representation, we further interpret each example into a neural human asset which allows novel view synthesis under arbitrary lighting conditions. We show our neural human assets can achieve extremely high capture performance and are capable of representing fine details such as facial wrinkles and cloth folds. We also validate UltraStage in single image relighting tasks, training neural networks with virtual relighted data from neural assets and demonstrating realistic rendering improvements over prior arts. UltraStage will be publicly available to the community to stimulate significant future developments in various human modeling and rendering tasks. The dataset is available at https://miaoing.github.io/RNHA. © 2023 IEEE. |
会议录编者/会议主办者 | Amazon Science ; Ant Research ; Cruise ; et al. ; Google ; Lambda |
关键词 | Humans: Face body pose gesture movement |
会议名称 | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 |
会议地点 | Vancouver, BC, Canada |
会议日期 | 17-24 June 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20234114868061 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333408 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_本科生 信息科学与技术学院_PI研究组_许岚组 |
共同第一作者 | Kai He; Di Wu |
通讯作者 | Jingyi Yu |
作者单位 | 1.ShanghaiTech University 2.University of Toronto |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Taotao Zhou,Kai He,Di Wu,et al. Relightable Neural Human Assets from Multi-view Gradient Illuminations[C]//Amazon Science, Ant Research, Cruise, et al., Google, Lambda:IEEE Computer Society,2023:4315-4327. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Taotao Zhou]的文章 |
[Kai He]的文章 |
[Di Wu]的文章 |
百度学术 |
百度学术中相似的文章 |
[Taotao Zhou]的文章 |
[Kai He]的文章 |
[Di Wu]的文章 |
必应学术 |
必应学术中相似的文章 |
[Taotao Zhou]的文章 |
[Kai He]的文章 |
[Di Wu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。