Unlocking efficient energy storage via regulating ion and electron-active subunits: an (SbS)(1.15)TiS2 superlattice for large and fast Na+ storage
2023-08-01
发表期刊SCIENCE CHINA-CHEMISTRY (IF:10.4[JCR-2023],7.9[5-Year])
ISSN1674-7291
EISSN1869-1870
卷号67期号:1页码:336-342
发表状态已发表
DOI10.1007/s11426-023-1699-x
摘要

Alloying-type metal sulfides with high sodiation activity and theoretical capacity are promising anode materials for high energy density sodium ion batteries. However, the large volume change and the migratory and aggregation behavior of metal atoms will cause severe capacity decay during the charge/discharge process. Herein, a robust and conductive TiS2 framework is integrated with a high-capacity SbS layer to construct a single phase (SbS)(1.15)TiS2 superlattice for both high-capacity and fast Na+ storage. The metallic TiS2 sublayer with high electron activity acts as a robust and conductive skeleton to buffer the volume expansion caused by conversion and alloying reaction between Na+ and SbS sublayer. Hence, high capacity and high rate capability can be synergistically realized in a single phase (SbS)(1.15)TiS2 superlattice. The novel (SbS)(1.15)TiS2 anode has a high charge capacity of 618 mAh g(-1) at 0.2 C and superior rate performance and cycling stability (205 mAh g(-1) at 35 C after 2,000 cycles). Furthermore, in situ and ex situ characterizations are applied to get an insight into the multi-step reaction mechanism. The integrity of robust Na-Ti-S skeleton during (dis)charge process can be confirmed. This superlattice construction idea to integrate the Na+-active unit and electron-active unit would provide a new avenue for exploring high-performance anode materials for advanced sodium-ion batteries.

关键词(SbS)(1.15)TiS2 sulfides sodium ion battery superlattice fast-charging
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Key Research and Development Program of China[2019YFA0210600] ; National Natural Science Foundation of China[
WOS研究方向Chemistry
WOS类目Chemistry, Multidisciplinary
WOS记录号WOS:001063916100002
出版者SCIENCE PRESS
EI入藏号20233514655537
EI主题词Sulfur compounds
EI分类号461.3 Biomechanics, Bionics and Biomimetics ; 531.1 Metallurgy ; 694.4 Storage ; 702.1.2 Secondary Batteries ; 714.1 Electron Tubes
原始文献类型Article in Press
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/333193
专题物质科学与技术学院
物质科学与技术学院_博士生
通讯作者Huang, Fuqiang
作者单位
1.Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, Shanghai 200050, Peoples R China
2.Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
3.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 200031, Peoples R China
4.Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China
推荐引用方式
GB/T 7714
Peng, Baixin,Cai, Tianxun,Zhang, Shaoning,et al. Unlocking efficient energy storage via regulating ion and electron-active subunits: an (SbS)(1.15)TiS2 superlattice for large and fast Na+ storage[J]. SCIENCE CHINA-CHEMISTRY,2023,67(1):336-342.
APA Peng, Baixin.,Cai, Tianxun.,Zhang, Shaoning.,Fang, Yuqiang.,Lv, Zhuoran.,...&Huang, Fuqiang.(2023).Unlocking efficient energy storage via regulating ion and electron-active subunits: an (SbS)(1.15)TiS2 superlattice for large and fast Na+ storage.SCIENCE CHINA-CHEMISTRY,67(1),336-342.
MLA Peng, Baixin,et al."Unlocking efficient energy storage via regulating ion and electron-active subunits: an (SbS)(1.15)TiS2 superlattice for large and fast Na+ storage".SCIENCE CHINA-CHEMISTRY 67.1(2023):336-342.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Peng, Baixin]的文章
[Cai, Tianxun]的文章
[Zhang, Shaoning]的文章
百度学术
百度学术中相似的文章
[Peng, Baixin]的文章
[Cai, Tianxun]的文章
[Zhang, Shaoning]的文章
必应学术
必应学术中相似的文章
[Peng, Baixin]的文章
[Cai, Tianxun]的文章
[Zhang, Shaoning]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。