| |||||||
ShanghaiTech University Knowledge Management System
A Parametric Kinetic Solver for Simulating Boundary-Dominated Turbulent Flow Phenomena | |
2023-12 | |
发表期刊 | ACM TRANSACTIONS ON GRAPHICS (IF:7.8[JCR-2023],9.5[5-Year]) |
ISSN | 0730-0301 |
EISSN | 1557-7368 |
卷号 | 42期号:6 |
发表状态 | 已发表 |
DOI | 10.1145/3618313 |
摘要 | Boundary layer flow plays a very important role in shaping the entire flow feature near and behind obstacles inside fluids. Thus, boundary treatment methods are crucial for a physically consistent fluid simulation, especially when turbulence occurs at a high Reynolds number, in which accurately handling thin boundary layer becomes quite challenging. Traditional Navier-Stokes solvers usually construct multi-resolution body-fitted meshes to achieve high accuracy, often together with near-wall and sub-grid turbulence modeling. However, this could be time-consuming and computationally intensive even with GPU accelerations. An alternative and much faster approach is to switch to a kinetic solver, such as the lattice Boltzmann model, but boundary treatment has to be done in a cut-cell manner, sacrificing accuracy unless grid resolution is much increased. In this paper, we focus on simulating the boundary-dominated turbulent flow phenomena with an efficient kinetic solver. In order to significantly improve the cut-cell-based boundary treatment for higher accuracy without excessively increasing the simulation resolution, we propose a novel parametric boundary treatment model, including a semi-Lagrangian scheme at the wall for non-equilibrium distribution functions, together with a purely link-based near-wall analytical mesoscopic model by analogy with the macroscopic wall modeling approach, which is yet simple to compute. Such a new method is further extended to handle moving boundaries, showing increased accuracy. Comprehensive analyses are conducted, with a variety of simulation results that are both qualitatively and quantitatively validated with experiments and real life scenarios, and compared to existing methods, to indicate superiority of our method. We highlight that our method not only provides a more accurate way for boundary treatment, but also a valuable tool to control boundary layer behaviors. This has not been achieved and demonstrated before in computer graphics, which we believe will be very useful in practical engineering. |
关键词 | Lattice Boltzmann Method Mesoscopic Wall Treatment Dynamic Moving Boundary |
学科门类 | 工学::计算机科学与技术(可授工学、理学学位) |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[62072310] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Software Engineering |
WOS记录号 | WOS:001139790400017 |
出版者 | Association for Computing Machinery |
EI入藏号 | 20235115230931 |
EI主题词 | Boundary layers |
EI分类号 | 443.1 Atmospheric Properties ; 631.1 Fluid Flow, General ; 641.1 Thermodynamics ; 708.3 Superconducting Materials ; 723.5 Computer Applications ; 921.2 Calculus ; 922.1 Probability Theory ; 931 Classical Physics ; Quantum Theory ; Relativity ; 931.1 Mechanics |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/331138 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_刘晓培组 |
通讯作者 | Liu, Mengyun |
作者单位 | ShanghaiTech Univ, Shanghai, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Liu, Mengyun,Liu, Xiaopei. A Parametric Kinetic Solver for Simulating Boundary-Dominated Turbulent Flow Phenomena[J]. ACM TRANSACTIONS ON GRAPHICS,2023,42(6). |
APA | Liu, Mengyun,&Liu, Xiaopei.(2023).A Parametric Kinetic Solver for Simulating Boundary-Dominated Turbulent Flow Phenomena.ACM TRANSACTIONS ON GRAPHICS,42(6). |
MLA | Liu, Mengyun,et al."A Parametric Kinetic Solver for Simulating Boundary-Dominated Turbulent Flow Phenomena".ACM TRANSACTIONS ON GRAPHICS 42.6(2023). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liu, Mengyun]的文章 |
[Liu, Xiaopei]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liu, Mengyun]的文章 |
[Liu, Xiaopei]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liu, Mengyun]的文章 |
[Liu, Xiaopei]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。