消息
×
loading..
Generalized Discriminative Deep Non-Negative Matrix Factorization Based on Latent Feature and Basis Learning
2023
会议录名称IJCAI INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
ISSN1045-0823
卷号2023-August
页码4486-4494
发表状态已发表
摘要

As a powerful tool for data representation, deep NMF has attracted much attention in recent years. Current deep NMF builds the multi-layer structure by decomposing either basis matrix or feature matrix into multiple factors, and probably complicates the learning process when data is insufficient or exhibits simple structure. To overcome the limitations, a novel method called Generalized Deep Non-negative Matrix Factorization (GDNMF) is proposed, which generalizes several NMF and deep NMF methods in a unified framework. GDNMF simultaneously performs decomposition on both features and bases, which learns a hierarchical data representation based on multi-level basis. To further improve the latent representation and enhance its flexibility, GDNMF mutually reinforces shallow linear model and deep non-linear model. Moreover, semi-supervised GDNMF is proposed by treating partial label information as soft constraints in the multi-layer structure. An efficient two-phase optimization algorithm is developed, and experiments on five real-world datesets verify its superior performance compared with state-of-the-art methods. © 2023 International Joint Conferences on Artificial Intelligence. All rights reserved.

会议录编者/会议主办者International Joint Conferences on Artifical Intelligence (IJCAI)
关键词Deep learning Learning systems Matrix algebra 'current Base matrix Data representations Feature matrices Learning process Multilayer structures Multiple factors Nonnegative matrix factorization Novel methods Simple structures
会议名称32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
出版地ALBERT-LUDWIGS UNIV FREIBURG GEORGES-KOHLER-ALLEE, INST INFORMATIK, GEB 052, FREIBURG, D-79110, GERMANY
会议地点Macao, China
会议日期August 19, 2023 - August 25, 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号WOS:001202344204065
出版者International Joint Conferences on Artificial Intelligence
EI入藏号20233714713583
EI主题词Non-negative matrix factorization
EI分类号461.4 Ergonomics and Human Factors Engineering ; 921 Mathematics ; 921.1 Algebra
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/329016
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_孙露组
作者单位
ShanghaiTech University, China
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Yang, Zijian,Li, Zhiwei,Sun, Lu. Generalized Discriminative Deep Non-Negative Matrix Factorization Based on Latent Feature and Basis Learning[C]//International Joint Conferences on Artifical Intelligence (IJCAI). ALBERT-LUDWIGS UNIV FREIBURG GEORGES-KOHLER-ALLEE, INST INFORMATIK, GEB 052, FREIBURG, D-79110, GERMANY:International Joint Conferences on Artificial Intelligence,2023:4486-4494.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Zijian]的文章
[Li, Zhiwei]的文章
[Sun, Lu]的文章
百度学术
百度学术中相似的文章
[Yang, Zijian]的文章
[Li, Zhiwei]的文章
[Sun, Lu]的文章
必应学术
必应学术中相似的文章
[Yang, Zijian]的文章
[Li, Zhiwei]的文章
[Sun, Lu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。