| |||||||
ShanghaiTech University Knowledge Management System
Generalized Discriminative Deep Non-Negative Matrix Factorization Based on Latent Feature and Basis Learning | |
2023 | |
会议录名称 | IJCAI INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE |
ISSN | 1045-0823 |
卷号 | 2023-August |
页码 | 4486-4494 |
发表状态 | 已发表 |
摘要 | As a powerful tool for data representation, deep NMF has attracted much attention in recent years. Current deep NMF builds the multi-layer structure by decomposing either basis matrix or feature matrix into multiple factors, and probably complicates the learning process when data is insufficient or exhibits simple structure. To overcome the limitations, a novel method called Generalized Deep Non-negative Matrix Factorization (GDNMF) is proposed, which generalizes several NMF and deep NMF methods in a unified framework. GDNMF simultaneously performs decomposition on both features and bases, which learns a hierarchical data representation based on multi-level basis. To further improve the latent representation and enhance its flexibility, GDNMF mutually reinforces shallow linear model and deep non-linear model. Moreover, semi-supervised GDNMF is proposed by treating partial label information as soft constraints in the multi-layer structure. An efficient two-phase optimization algorithm is developed, and experiments on five real-world datesets verify its superior performance compared with state-of-the-art methods. © 2023 International Joint Conferences on Artificial Intelligence. All rights reserved. |
会议录编者/会议主办者 | International Joint Conferences on Artifical Intelligence (IJCAI) |
关键词 | Deep learning Learning systems Matrix algebra 'current Base matrix Data representations Feature matrices Learning process Multilayer structures Multiple factors Nonnegative matrix factorization Novel methods Simple structures |
会议名称 | 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023 |
出版地 | ALBERT-LUDWIGS UNIV FREIBURG GEORGES-KOHLER-ALLEE, INST INFORMATIK, GEB 052, FREIBURG, D-79110, GERMANY |
会议地点 | Macao, China |
会议日期 | August 19, 2023 - August 25, 2023 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods |
WOS记录号 | WOS:001202344204065 |
出版者 | International Joint Conferences on Artificial Intelligence |
EI入藏号 | 20233714713583 |
EI主题词 | Non-negative matrix factorization |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 921 Mathematics ; 921.1 Algebra |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/329016 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_孙露组 |
作者单位 | ShanghaiTech University, China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Yang, Zijian,Li, Zhiwei,Sun, Lu. Generalized Discriminative Deep Non-Negative Matrix Factorization Based on Latent Feature and Basis Learning[C]//International Joint Conferences on Artifical Intelligence (IJCAI). ALBERT-LUDWIGS UNIV FREIBURG GEORGES-KOHLER-ALLEE, INST INFORMATIK, GEB 052, FREIBURG, D-79110, GERMANY:International Joint Conferences on Artificial Intelligence,2023:4486-4494. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yang, Zijian]的文章 |
[Li, Zhiwei]的文章 |
[Sun, Lu]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yang, Zijian]的文章 |
[Li, Zhiwei]的文章 |
[Sun, Lu]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yang, Zijian]的文章 |
[Li, Zhiwei]的文章 |
[Sun, Lu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。