消息
×
loading..
Federated Learning With Energy Harvesting Devices
2024-03
发表期刊IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING (IF:5.3[JCR-2023],4.5[5-Year])
ISSN2473-2400
EISSN2473-2400
卷号8期号:1页码:190 - 204
发表状态已发表
DOI10.1109/TGCN.2023.3310569
摘要

Federated learning (FL) is a promising technique for distilling artificial intelligence from massive data distributed in Internet-of-Things networks, while keeping data privacy. However, the efficient deployment of FL faces several challenges due to e.g., limited radio resources, computation capabilities, and battery lives of Internet-of-Things devices. To address these challenges, in this work, the energy harvesting technique is first enabled on Internet-of-Things devices for supporting their sustainable lifelong learning. Then, the convergence rate of the FL algorithm is derived, which is shown to depend on the data utility (defined as the number of used training samples) in each training iteration. Thus, to accelerate the convergence rate and reduce the training latency, a data utility maximization problem for each iteration is formulated, under several practical constraints on the limited time, bandwidth (i.e., number of subcarriers), computation frequency, and energy supply. The problem is mixed-integer and non-convex, and hence NP-hard. To solve the problem, an optimal joint device selection and resource allocation (JDSRA) scheme is proposed. In this scheme, a distributed on-device resource allocation problem is first solved to determine the minimum required number of subcarriers for each device, followed by a dynamic programming approach for attaining the optimal device selection policy. In particular, no global channel state information (CSI) sharing is needed to execute the scheme. Finally, extensive experiments are presented to demonstrate the performance of the proposed optimal algorithm. IEEE

关键词Channel state information Data privacy Dynamic programming Energy harvesting Information management Iterative methods Job analysis Resource allocation Computational modelling Convergence Convergence rates Data utilities Device selection Distributed resource allocation Federated learning Resource management Sub-carriers Task analysis
URL查看原文
收录类别SCI ; EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20233714721874
EI主题词Internet of things
EI分类号525.5 Energy Conversion Issues ; 722.3 Data Communication, Equipment and Techniques ; 723 Computer Software, Data Handling and Applications ; 912.2 Management ; 921.5 Optimization Techniques ; 921.6 Numerical Methods
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/329009
专题信息科学与技术学院
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_文鼎柱组
通讯作者Dingzhu Wen
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Shenzhen Research Institute of Big Data, Shenzhen, China
3.Department of Electronic and Electrical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
4.School of Electronic Information, Wuhan University, Wuhan, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Li Zeng,Dingzhu Wen,Guangxu Zhu,et al. Federated Learning With Energy Harvesting Devices[J]. IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING,2024,8(1):190 - 204.
APA Li Zeng,Dingzhu Wen,Guangxu Zhu,Changsheng You,Qimei Chen,&Yuanming Shi.(2024).Federated Learning With Energy Harvesting Devices.IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING,8(1),190 - 204.
MLA Li Zeng,et al."Federated Learning With Energy Harvesting Devices".IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING 8.1(2024):190 - 204.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li Zeng]的文章
[Dingzhu Wen]的文章
[Guangxu Zhu]的文章
百度学术
百度学术中相似的文章
[Li Zeng]的文章
[Dingzhu Wen]的文章
[Guangxu Zhu]的文章
必应学术
必应学术中相似的文章
[Li Zeng]的文章
[Dingzhu Wen]的文章
[Guangxu Zhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。