ShanghaiTech University Knowledge Management System
A robust and efficient AI assistant for breast tumor segmentation from DCE-MRI via a spatial-temporal framework | |
Zhang, Jiadong1 ![]() ![]() ![]() ![]() ![]() | |
2023-09-08 | |
发表期刊 | PATTERNS (IF:6.7[JCR-2023],6.6[5-Year]) |
ISSN | 2666-3899 |
EISSN | 2666-3899 |
卷号 | 4期号:9 |
发表状态 | 已发表 |
DOI | 10.1016/j.patter.2023.100826 |
摘要 | Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows screening, follow up, and diagnosis for breast tumor with high sensitivity. Accurate tumor segmentation from DCE-MRI can provide crucial information of tumor location and shape, which significantly influences the downstream clinical decisions. In this paper, we aim to develop an artificial intelligence (AI) assistant to automatically segment breast tumors by capturing dynamic changes in multi-phase DCE-MRI with a spatial-temporal framework. The main advantages of our AI assistant include (1) robustness, i.e., our model can handle MR data with different phase numbers and imaging intervals, as demonstrated on a large-scale dataset from seven medical centers, and (2) efficiency, i.e., our AI assistant significantly reduces the time required for manual annotation by a factor of 20, while maintaining accuracy comparable to that of physicians. More importantly, as the fundamental step to build an AI-assisted breast cancer diagnosis system, our AI assistant will promote the application of AI in more clinical diagnostic practices regarding breast cancer. © 2023 The Authors |
关键词 | Diagnosis Large dataset Magnetic resonance imaging Medical imaging Tumors Breast tumour Domain problems DSML 3: development/pre-production: data science output have been rolled out/validated across multiple domain/problem Dynamic contrast-enhanced magnetic resonance imaging Follow up Multiple domains Pre-production Production data Spatial temporals Tumor segmentation |
收录类别 | EI |
语种 | 英语 |
出版者 | Cell Press |
EI入藏号 | 20233614690570 |
EI主题词 | Diseases |
EI分类号 | 461.1 Biomedical Engineering ; 461.2 Biological Materials and Tissue Engineering ; 461.6 Medicine and Pharmacology ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.2 Data Processing and Image Processing ; 746 Imaging Techniques |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/329006 |
专题 | 生物医学工程学院 信息科学与技术学院_PI研究组_高飞组 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_PI研究组_崔智铭组 |
通讯作者 | Wang, Rongpin; Liu, Jun; Zhang, Jiayin; Ding, Zhongxiang; Sun, Kun; Li, Zhenhui; Liu, Zaiyi; Shen, Dinggang |
作者单位 | 1.School of Biomedical Engineering, ShanghaiTech University, Shanghai; 201210, China; 2.Department of Radiology, Guangdong Provincial People's Hospital, Guangdong; 510080, China; 3.Department of Radiology, The Second Xiangya Hospital, Central South University, Hunan; 410011, China; 4.School of Medical Imaging, Hangzhou Medical College, Zhejiang; 310059, China; 5.Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai; 200080, China; 6.Department of Radiology, Guizhou Provincial People's Hospital, Guizhou; 550002, China; 7.School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai; 200093, China; 8.Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou; 510515, China; 9.School of Electrical and Information Engineering, The University of Sydney, Sydney; NSW; 2006, Australia; 10.Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou; 310003, China; 11.Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai; 200025, China; 12.Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming; 650118, China; 13.Shanghai United Imaging Intelligence Co., Ltd., Shanghai; 200230, China; 14.Shanghai Clinical Research and Trial Center, Shanghai; 200052, China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Zhang, Jiadong,Cui, Zhiming,Shi, Zhenwei,et al. A robust and efficient AI assistant for breast tumor segmentation from DCE-MRI via a spatial-temporal framework[J]. PATTERNS,2023,4(9). |
APA | Zhang, Jiadong.,Cui, Zhiming.,Shi, Zhenwei.,Jiang, Yingjia.,Zhang, Zhiliang.,...&Shen, Dinggang.(2023).A robust and efficient AI assistant for breast tumor segmentation from DCE-MRI via a spatial-temporal framework.PATTERNS,4(9). |
MLA | Zhang, Jiadong,et al."A robust and efficient AI assistant for breast tumor segmentation from DCE-MRI via a spatial-temporal framework".PATTERNS 4.9(2023). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。