ShanghaiTech University Knowledge Management System
Learning protein fitness landscapes with deep mutational scanning data from multiple sources | |
2023-08-16 | |
发表期刊 | CELL SYSTEMS (IF:9.0[JCR-2023],11.1[5-Year]) |
ISSN | 2405-4712 |
EISSN | 2405-4720 |
卷号 | 14期号:8 |
发表状态 | 已发表 |
DOI | 10.1016/j.cels.2023.07.003 |
摘要 | One of the key points of machine learning-assisted directed evolution (MLDE) is the accurate learning of the fitness landscape, a conceptual mapping from sequence variants to the desired function. Here, we describe a multi-protein training scheme that leverages the existing deep mutational scanning data from diverse pro-teins to aid in understanding the fitness landscape of a new protein. Proof-of-concept trials are designed to validate this training scheme in three aspects: random and positional extrapolation for single-variant ef-fects, zero-shot fitness predictions for new proteins, and extrapolation for higher-order variant effects from single-variant effects. Moreover, our study identified previously overlooked strong baselines, and their unexpectedly good performance brings our attention to the pitfalls of MLDE. Overall, these results may improve our understanding of the association between different protein fitness profiles and shed light on developing better machine learning-assisted approaches to the directed evolution of proteins. A record of this paper's transparent peer review process is included in the supplemental information. |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[ |
WOS研究方向 | Biochemistry & Molecular Biology ; Cell Biology |
WOS类目 | Biochemistry & Molecular Biology ; Cell Biology |
WOS记录号 | WOS:001058619600001 |
出版者 | CELL PRESS |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/328983 |
专题 | 免疫化学研究所 生命科学与技术学院_博士生 |
通讯作者 | Liao, Cangsong; Zheng, Mingyue |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Mat Med, Drug Discovery & Design Ctr, State Key Lab Drug Res, Shanghai 201203, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai Inst Adv Immunochem Studies, Shanghai 201210, Peoples R China 4.China Pharmaceut Univ, Sch Pharm, Nanjing 211198, Peoples R China 5.Nanjing Univ Chinese Med, Sch Chinese Mat Med, Nanjing 210023, Peoples R China 6.Lingang Lab, Shanghai 200031, Peoples R China 7.Chinese Acad Sci, Shanghai Inst Mat Med, Chem Biol Res Ctr, Shanghai 201203, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, Lin,Zhang, Zehong,Li, Zhenghao,et al. Learning protein fitness landscapes with deep mutational scanning data from multiple sources[J]. CELL SYSTEMS,2023,14(8). |
APA | Chen, Lin.,Zhang, Zehong.,Li, Zhenghao.,Li, Rui.,Huo, Ruifeng.,...&Zheng, Mingyue.(2023).Learning protein fitness landscapes with deep mutational scanning data from multiple sources.CELL SYSTEMS,14(8). |
MLA | Chen, Lin,et al."Learning protein fitness landscapes with deep mutational scanning data from multiple sources".CELL SYSTEMS 14.8(2023). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。