Learning protein fitness landscapes with deep mutational scanning data from multiple sources
2023-08-16
发表期刊CELL SYSTEMS (IF:9.0[JCR-2023],11.1[5-Year])
ISSN2405-4712
EISSN2405-4720
卷号14期号:8
发表状态已发表
DOI10.1016/j.cels.2023.07.003
摘要

One of the key points of machine learning-assisted directed evolution (MLDE) is the accurate learning of the fitness landscape, a conceptual mapping from sequence variants to the desired function. Here, we describe a multi-protein training scheme that leverages the existing deep mutational scanning data from diverse pro-teins to aid in understanding the fitness landscape of a new protein. Proof-of-concept trials are designed to validate this training scheme in three aspects: random and positional extrapolation for single-variant ef-fects, zero-shot fitness predictions for new proteins, and extrapolation for higher-order variant effects from single-variant effects. Moreover, our study identified previously overlooked strong baselines, and their unexpectedly good performance brings our attention to the pitfalls of MLDE. Overall, these results may improve our understanding of the association between different protein fitness profiles and shed light on developing better machine learning-assisted approaches to the directed evolution of proteins. A record of this paper's transparent peer review process is included in the supplemental information.

URL查看原文
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[
WOS研究方向Biochemistry & Molecular Biology ; Cell Biology
WOS类目Biochemistry & Molecular Biology ; Cell Biology
WOS记录号WOS:001058619600001
出版者CELL PRESS
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/328983
专题免疫化学研究所
生命科学与技术学院_博士生
通讯作者Liao, Cangsong; Zheng, Mingyue
作者单位
1.Chinese Acad Sci, Shanghai Inst Mat Med, Drug Discovery & Design Ctr, State Key Lab Drug Res, Shanghai 201203, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai Inst Adv Immunochem Studies, Shanghai 201210, Peoples R China
4.China Pharmaceut Univ, Sch Pharm, Nanjing 211198, Peoples R China
5.Nanjing Univ Chinese Med, Sch Chinese Mat Med, Nanjing 210023, Peoples R China
6.Lingang Lab, Shanghai 200031, Peoples R China
7.Chinese Acad Sci, Shanghai Inst Mat Med, Chem Biol Res Ctr, Shanghai 201203, Peoples R China
推荐引用方式
GB/T 7714
Chen, Lin,Zhang, Zehong,Li, Zhenghao,et al. Learning protein fitness landscapes with deep mutational scanning data from multiple sources[J]. CELL SYSTEMS,2023,14(8).
APA Chen, Lin.,Zhang, Zehong.,Li, Zhenghao.,Li, Rui.,Huo, Ruifeng.,...&Zheng, Mingyue.(2023).Learning protein fitness landscapes with deep mutational scanning data from multiple sources.CELL SYSTEMS,14(8).
MLA Chen, Lin,et al."Learning protein fitness landscapes with deep mutational scanning data from multiple sources".CELL SYSTEMS 14.8(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Lin]的文章
[Zhang, Zehong]的文章
[Li, Zhenghao]的文章
百度学术
百度学术中相似的文章
[Chen, Lin]的文章
[Zhang, Zehong]的文章
[Li, Zhenghao]的文章
必应学术
必应学术中相似的文章
[Chen, Lin]的文章
[Zhang, Zehong]的文章
[Li, Zhenghao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。