| |||||||
ShanghaiTech University Knowledge Management System
CCQ: Cross-Class Query Network for Partially Labeled Organ Segmentation | |
2023-06-27 | |
会议录名称 | PROCEEDINGS OF THE 37TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, AAAI 2023 |
ISSN | 2159-5399 |
卷号 | 37 |
页码 | 1755-1763 |
发表状态 | 已发表 |
摘要 | Learning multi-organ segmentation from multiple partially-labeled datasets attracts increasing attention. It can be a promising solution for the scarcity of large-scale, fully labeled 3D medical image segmentation datasets. However, existing algorithms of multi-organ segmentation on partially-labeled datasets neglect the semantic relations and anatomical priors between different categories of organs, which is crucial for partially-labeled multi-organ segmentation. In this paper, we tackle the limitations above by proposing the Cross-Class Query Network (CCQ). CCQ consists of an image encoder, a cross-class query learning module, and an attentive refinement segmentation module. More specifically, the image encoder captures the long-range dependency of a single image via the transformer encoder. Cross-class query learning module first generates query vectors that represent semantic concepts of different categories and then utilizes these query vectors to find the class-relevant features of image representation for segmentation. The attentive refinement segmentation module with an attentive skip connection incorporates the high-resolution image details and eliminates the class-irrelevant noise. Extensive experiment results demonstrate that CCQ outperforms all the state-of-the-art models on the MOTS dataset, which consists of seven organ and tumor segmentation tasks. Code is available at https://github.com/Yang-007/CCQ.git Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). |
会议举办国 | Association for the Advancement of Artificial Intelligence |
会议录编者/会议主办者 | Association for the Advancement of Artificial Intelligence |
关键词 | Large dataset Medical imaging Semantic Segmentation Semantics Signal encoding 3D medical image Image encoders Labeled dataset Large-scales Learning modules Multi-organ segmentations Organ segmentation Query learning Query networks Query vectors |
会议名称 | 37th AAAI Conference on Artificial Intelligence, AAAI 2023 |
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA |
会议地点 | Washington, DC, United states |
会议日期 | February 7, 2023 - February 14, 2023 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[62206174] ; Shanghai Pujiang Program[21PJ1410900] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods |
WOS记录号 | WOS:001243761100039 |
出版者 | AAAI Press |
EI入藏号 | 20233314552098 |
EI主题词 | Image representation |
EISSN | 2374-3468 |
EI分类号 | 461.1 Biomedical Engineering ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 746 Imaging Techniques |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325836 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_杨思蓓组 |
通讯作者 | Yang, Sibei |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, China; 2.Information School, University of Washington, United States; 3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Liu, Xuyang,Wen, Bingbing,Yang, Sibei. CCQ: Cross-Class Query Network for Partially Labeled Organ Segmentation[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:AAAI Press,2023:1755-1763. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。