消息
×
loading..
CCQ: Cross-Class Query Network for Partially Labeled Organ Segmentation
2023-06-27
会议录名称PROCEEDINGS OF THE 37TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, AAAI 2023
ISSN2159-5399
卷号37
页码1755-1763
发表状态已发表
摘要

Learning multi-organ segmentation from multiple partially-labeled datasets attracts increasing attention. It can be a promising solution for the scarcity of large-scale, fully labeled 3D medical image segmentation datasets. However, existing algorithms of multi-organ segmentation on partially-labeled datasets neglect the semantic relations and anatomical priors between different categories of organs, which is crucial for partially-labeled multi-organ segmentation. In this paper, we tackle the limitations above by proposing the Cross-Class Query Network (CCQ). CCQ consists of an image encoder, a cross-class query learning module, and an attentive refinement segmentation module. More specifically, the image encoder captures the long-range dependency of a single image via the transformer encoder. Cross-class query learning module first generates query vectors that represent semantic concepts of different categories and then utilizes these query vectors to find the class-relevant features of image representation for segmentation. The attentive refinement segmentation module with an attentive skip connection incorporates the high-resolution image details and eliminates the class-irrelevant noise. Extensive experiment results demonstrate that CCQ outperforms all the state-of-the-art models on the MOTS dataset, which consists of seven organ and tumor segmentation tasks. Code is available at https://github.com/Yang-007/CCQ.git Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org).

会议举办国Association for the Advancement of Artificial Intelligence
会议录编者/会议主办者Association for the Advancement of Artificial Intelligence
关键词Large dataset Medical imaging Semantic Segmentation Semantics Signal encoding 3D medical image Image encoders Labeled dataset Large-scales Learning modules Multi-organ segmentations Organ segmentation Query learning Query networks Query vectors
会议名称37th AAAI Conference on Artificial Intelligence, AAAI 2023
出版地2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
会议地点Washington, DC, United states
会议日期February 7, 2023 - February 14, 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目National Natural Science Foundation of China[62206174] ; Shanghai Pujiang Program[21PJ1410900]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号WOS:001243761100039
出版者AAAI Press
EI入藏号20233314552098
EI主题词Image representation
EISSN2374-3468
EI分类号461.1 Biomedical Engineering ; 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence ; 746 Imaging Techniques
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325836
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_杨思蓓组
通讯作者Yang, Sibei
作者单位
1.School of Information Science and Technology, ShanghaiTech University, China;
2.Information School, University of Washington, United States;
3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Liu, Xuyang,Wen, Bingbing,Yang, Sibei. CCQ: Cross-Class Query Network for Partially Labeled Organ Segmentation[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:AAAI Press,2023:1755-1763.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Xuyang]的文章
[Wen, Bingbing]的文章
[Yang, Sibei]的文章
百度学术
百度学术中相似的文章
[Liu, Xuyang]的文章
[Wen, Bingbing]的文章
[Yang, Sibei]的文章
必应学术
必应学术中相似的文章
[Liu, Xuyang]的文章
[Wen, Bingbing]的文章
[Yang, Sibei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。