ShanghaiTech University Knowledge Management System
An Efficient Frequency Domain Vision Pipeline From RAW Images to Backend Tasks | |
2023 | |
会议录名称 | PROCEEDINGS - IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS |
ISSN | 0271-4310 |
卷号 | 2023-May |
发表状态 | 已发表 |
DOI | 10.1109/ISCAS46773.2023.10182018 |
摘要 | Though high resolution benefits computer vision performance, they are not commonly used in convolutional neural network (CNN)-based vision algorithms due to the limitation of memory and computation resource. Learning in the frequency domain makes high resolution images directly acceptable by CNNs, but the computation, time and energy overhead for pre-processing, including image signal processing (ISP) and domain transformation, can be large. This paper explores different image processing and domain transformation operations and proposes an efficient end-to-end frequency domain learning pipeline from RAW images to vision tasks. In particular, we simplify the pre-processing part by skipping the entire ISP pipeline and replacing the Discrete Cosine Transform (DCT) with a multiplication-free approximated one. Experimental results show that the final vision performance of the proposed pipeline is very close to that of the conventional pipeline, while significant amount of redundant operations can be saved. © 2023 IEEE. |
会议举办国 | et al.; Huawei; IEEE; IEEE Circuits and Systems Society (CAS); Samsung Semiconductor; Synopsys |
会议录编者/会议主办者 | et al. ; Huawei ; IEEE ; IEEE Circuits and Systems Society (CAS) ; Samsung Semiconductor ; Synopsys |
关键词 | Computer vision Convolutional neural networks Frequency domain analysis Image compression Pipeline processing systems Pipelines Discrete cosine transform Domain learning Domain transformation Frequency domain learning Frequency domains High resolution Image signal processing Performance Pre-processing |
会议名称 | 56th IEEE International Symposium on Circuits and Systems, ISCAS 2023 |
会议地点 | Monterey, CA, United states |
会议日期 | May 21, 2023 - May 25, 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20233314552700 |
EI主题词 | Discrete cosine transforms |
EI分类号 | 619.1 Pipe, Piping and Pipelines ; 722.4 Digital Computers and Systems ; 723.5 Computer Applications ; 741.2 Vision ; 921.3 Mathematical Transformations |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325827 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_娄鑫组 信息科学与技术学院_博士生 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Haoyan Li,Wei Zhou,Xiangyu Zhang,et al. An Efficient Frequency Domain Vision Pipeline From RAW Images to Backend Tasks[C]//et al., Huawei, IEEE, IEEE Circuits and Systems Society (CAS), Samsung Semiconductor, Synopsys:Institute of Electrical and Electronics Engineers Inc.,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。