An Efficient Frequency Domain Vision Pipeline From RAW Images to Backend Tasks
2023
会议录名称PROCEEDINGS - IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS
ISSN0271-4310
卷号2023-May
发表状态已发表
DOI10.1109/ISCAS46773.2023.10182018
摘要

Though high resolution benefits computer vision performance, they are not commonly used in convolutional neural network (CNN)-based vision algorithms due to the limitation of memory and computation resource. Learning in the frequency domain makes high resolution images directly acceptable by CNNs, but the computation, time and energy overhead for pre-processing, including image signal processing (ISP) and domain transformation, can be large. This paper explores different image processing and domain transformation operations and proposes an efficient end-to-end frequency domain learning pipeline from RAW images to vision tasks. In particular, we simplify the pre-processing part by skipping the entire ISP pipeline and replacing the Discrete Cosine Transform (DCT) with a multiplication-free approximated one. Experimental results show that the final vision performance of the proposed pipeline is very close to that of the conventional pipeline, while significant amount of redundant operations can be saved. © 2023 IEEE.

会议举办国et al.; Huawei; IEEE; IEEE Circuits and Systems Society (CAS); Samsung Semiconductor; Synopsys
会议录编者/会议主办者et al. ; Huawei ; IEEE ; IEEE Circuits and Systems Society (CAS) ; Samsung Semiconductor ; Synopsys
关键词Computer vision Convolutional neural networks Frequency domain analysis Image compression Pipeline processing systems Pipelines Discrete cosine transform Domain learning Domain transformation Frequency domain learning Frequency domains High resolution Image signal processing Performance Pre-processing
会议名称56th IEEE International Symposium on Circuits and Systems, ISCAS 2023
会议地点Monterey, CA, United states
会议日期May 21, 2023 - May 25, 2023
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20233314552700
EI主题词Discrete cosine transforms
EI分类号619.1 Pipe, Piping and Pipelines ; 722.4 Digital Computers and Systems ; 723.5 Computer Applications ; 741.2 Vision ; 921.3 Mathematical Transformations
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325827
专题信息科学与技术学院
信息科学与技术学院_PI研究组_娄鑫组
信息科学与技术学院_博士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Haoyan Li,Wei Zhou,Xiangyu Zhang,et al. An Efficient Frequency Domain Vision Pipeline From RAW Images to Backend Tasks[C]//et al., Huawei, IEEE, IEEE Circuits and Systems Society (CAS), Samsung Semiconductor, Synopsys:Institute of Electrical and Electronics Engineers Inc.,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Haoyan Li]的文章
[Wei Zhou]的文章
[Xiangyu Zhang]的文章
百度学术
百度学术中相似的文章
[Haoyan Li]的文章
[Wei Zhou]的文章
[Xiangyu Zhang]的文章
必应学术
必应学术中相似的文章
[Haoyan Li]的文章
[Wei Zhou]的文章
[Xiangyu Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。