DreamFace: Progressive Generation of Animatable 3D Faces under Text Guidance
2023-08-01
发表期刊ACM TRANSACTIONS ON GRAPHICS (IF:7.8[JCR-2023],9.5[5-Year])
ISSN0730-0301
EISSN1557-7368
卷号42期号:4
发表状态已发表
DOI10.1145/3592094
摘要

Emerging Metaverse applications demand accessible, accurate and easy-To-use tools for 3D digital human creations in order to depict different cultures and societies as if in the physical world. Recent large-scale vision-language advances pave the way for novices to conveniently customize 3D content. However, the generated CG-friendly assets still cannot represent the desired facial traits for human characteristics. In this paper, we present Dream-Face, a progressive scheme to generate personalized 3D faces under text guidance. It enables layman users to naturally customize 3D facial assets that are compatible with CG pipelines, with desired shapes, textures and fine-grained animation capabilities. From a text input to describe the facial traits, we first introduce a coarse-To-fine scheme to generate the neutral facial geometry with a unified topology. We employ a selection strategy in the CLIP embedding space to generate coarse geometry, and subsequently optimize both the detailed displacements and normals using Score Distillation Sampling (SDS) from the generic Latent Diffusion Model (LDM). Then, for neutral appearance generation, we introduce a dual-path mechanism, which combines the generic LDM with a novel texture LDM to ensure both the diversity and textural specification in the UV space. We also employ a two-stage optimization to perform SDS in both the latent and image spaces to significantly provide compact priors for fine-grained synthesis. It also enables learning the mapping from the compact latent space into physically-based textures (diffuse albedo, specular intensity, normal maps, etc.). Our generated neutral assets naturally support blendshapes-based facial animations, thanks to the unified geometric topology. We further improve the animation ability with personalized deformation characteristics. To this end, we learn the universal expression prior in a latent space with neutral asset conditioning using the cross-identity hypernetwork, we subsequently train a neural facial tracker from video input space into the pre-Trained expression space for personalized fine-grained animation. Extensive qualitative and quantitative experiments validate the effectiveness and generalizability of DreamFace. Notably, DreamFace can generate realistic 3D facial assets with physically-based rendering quality and rich animation ability from video footage, even for fashion icons or exotic characters in cartoons and fiction movies. © 2023 Owner/Author(s).

关键词Distillation Geometry Interactive computer graphics Textures Three dimensional computer graphics Topology Virtual reality 3d digital human 3D faces Diffusion model Digital humans Fine grained Metaverses Physical world Physically based Physically-based facial asset Text-driven generation
收录类别EI
语种英语
出版者Association for Computing Machinery
EI入藏号20233414607806
EI主题词Animation
EI分类号723 Computer Software, Data Handling and Applications ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 802.3 Chemical Operations ; 921 Mathematics ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325796
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
信息科学与技术学院_PI研究组_许岚组
信息科学与技术学院_PI研究组_石野组
信息科学与技术学院_PI研究组_杨思蓓组
共同第一作者Zhang, Longwen; Qiu, Qiwei; Lin, Hongyang; Zhang, Qixuan
通讯作者Yang, Sibei; Xu, Lan; Yu, Jingyi
作者单位
1.ShanghaiTech University and Deemos Technology Co. Ltd., Shanghai, China;
2.ShanghaiTech University, Shanghai, China;
3.Huazhong University of Science and Technology, Wuhan, China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Zhang, Longwen,Qiu, Qiwei,Lin, Hongyang,et al. DreamFace: Progressive Generation of Animatable 3D Faces under Text Guidance[J]. ACM TRANSACTIONS ON GRAPHICS,2023,42(4).
APA Zhang, Longwen.,Qiu, Qiwei.,Lin, Hongyang.,Zhang, Qixuan.,Shi, Cheng.,...&Yu, Jingyi.(2023).DreamFace: Progressive Generation of Animatable 3D Faces under Text Guidance.ACM TRANSACTIONS ON GRAPHICS,42(4).
MLA Zhang, Longwen,et al."DreamFace: Progressive Generation of Animatable 3D Faces under Text Guidance".ACM TRANSACTIONS ON GRAPHICS 42.4(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Longwen]的文章
[Qiu, Qiwei]的文章
[Lin, Hongyang]的文章
百度学术
百度学术中相似的文章
[Zhang, Longwen]的文章
[Qiu, Qiwei]的文章
[Lin, Hongyang]的文章
必应学术
必应学术中相似的文章
[Zhang, Longwen]的文章
[Qiu, Qiwei]的文章
[Lin, Hongyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。