| |||||||
ShanghaiTech University Knowledge Management System
Individualized assessment of brain A deposition with fMRI using deep learning | |
2023 | |
发表期刊 | IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS (IF:6.7[JCR-2023],7.1[5-Year]) |
ISSN | 2168-2194 |
EISSN | 2168-2208 |
卷号 | PP期号:99页码:1-12 |
发表状态 | 已发表 |
DOI | 10.1109/JBHI.2023.3306460 |
摘要 | PET-based Alzheimers disease (AD) assessment has many limitations in large-scale screening. Non-invasive techniques such as resting-state functional magnetic resonance imaging (rs-fMRI) have been proven valuable in early AD diagnosis. This study investigated feasibility of using rs-fMRI, especially functional connectivity (FC), for individualized assessment of brain amyloid- deposition derived from PET. We designed a Graph Convolutional Networks (GCNs) and random forest (RF) based integrated framework for using rs-fMRI-derived multi-level FC networks to predict amyloid- PET patterns with the OASIS-3 (N 258) and ADNI-2 (N 291) datasets. Our method achieved satisfactory accuracy not only in A-PET grade classification (for negative, intermediate, and positive grades, with accuracy in the three-class classification as 62.8 and 64.3 on two datasets, respectively), but also in prediction of whole-brain region-level A-PET standard uptake value ratios (SUVRs) (with the mean square errors as 0.039 and 0.074 for two datasets, respectively). Model interpretability examination also revealed the contributive role of the limbic network. This study demonstrated high feasibility and reproducibility of using low-cost, more accessible magnetic resonance imaging (MRI) to approximate PET-based diagnosis. IEEE |
关键词 | Bioinformatics Biomarkers Classification (of information) Convolution Deposition Diagnosis Forestry Magnetic resonance imaging Mean square error Medical imaging Amyloid β Brain modeling Convolutional networks Functional connectivity Functional magnetic resonance imaging Graph convolutional network High-order High-order functional connectivity Higher-order Image edge detection |
URL | 查看原文 |
收录类别 | EI ; SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[62131015] ; Guangzhou Science and Technology Plan Project[202102010495] ; National Key Scientific Instrument Development Program[82027808] ; Science and Technology Commission of Shanghai Municipality[21010502600] ; Shanghai Pujiang Program[21PJ1421400] ; Shanghai Pilot Program for Basic Research -Chinese Academy of Science, Shanghai Branch[JCYJ-SHFY-2022-014] ; Shenzhen Science and Technology Program[KCXFZ20211020163408012] |
WOS研究方向 | Computer Science ; Mathematical & Computational Biology ; Medical Informatics |
WOS类目 | Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Medical Informatics |
WOS记录号 | WOS:001129955100021 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20233514640318 |
EI主题词 | Brain |
EI分类号 | 461.1 Biomedical Engineering ; 461.6 Medicine and Pharmacology ; 461.8.2 Bioinformatics ; 701.2 Magnetism: Basic Concepts and Phenomena ; 716.1 Information Theory and Signal Processing ; 746 Imaging Techniques ; 802.3 Chemical Operations ; 821 Agricultural Equipment and Methods ; Vegetation and Pest Control ; 903.1 Information Sources and Analysis ; 922.2 Mathematical Statistics |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325795 |
专题 | 生物医学工程学院 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_公共科研平台_智能医学科研平台 生物医学工程学院_PI研究组_张寒组 |
通讯作者 | Zhang, Han; Shen, Dinggang |
作者单位 | 1.Guangzhou Univ, Sch Educ, Guangzhou 510006, Peoples R China 2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China 3.Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China 4.Natl Univ Singapore, Dept Biomed Engn, Singapore 119077, Singapore 5.United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai 201807, Peoples R China 6.Shanghai Clin Res & Trial Ctr, Shanghai 200231, Peoples R China |
第一作者单位 | 生物医学工程学院 |
通讯作者单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Li, Chaolin,Liu, Mianxin,Xia, Jing,et al. Individualized assessment of brain A deposition with fMRI using deep learning[J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,2023,PP(99):1-12. |
APA | Li, Chaolin.,Liu, Mianxin.,Xia, Jing.,Mei, Lang.,Yang, Qing.,...&Shen, Dinggang.(2023).Individualized assessment of brain A deposition with fMRI using deep learning.IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,PP(99),1-12. |
MLA | Li, Chaolin,et al."Individualized assessment of brain A deposition with fMRI using deep learning".IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS PP.99(2023):1-12. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。