消息
×
loading..
Individualized assessment of brain A deposition with fMRI using deep learning
2023
发表期刊IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS (IF:6.7[JCR-2023],7.1[5-Year])
ISSN2168-2194
EISSN2168-2208
卷号PP期号:99页码:1-12
发表状态已发表
DOI10.1109/JBHI.2023.3306460
摘要

PET-based Alzheimers disease (AD) assessment has many limitations in large-scale screening. Non-invasive techniques such as resting-state functional magnetic resonance imaging (rs-fMRI) have been proven valuable in early AD diagnosis. This study investigated feasibility of using rs-fMRI, especially functional connectivity (FC), for individualized assessment of brain amyloid- deposition derived from PET. We designed a Graph Convolutional Networks (GCNs) and random forest (RF) based integrated framework for using rs-fMRI-derived multi-level FC networks to predict amyloid- PET patterns with the OASIS-3 (N 258) and ADNI-2 (N 291) datasets. Our method achieved satisfactory accuracy not only in A-PET grade classification (for negative, intermediate, and positive grades, with accuracy in the three-class classification as 62.8 and 64.3 on two datasets, respectively), but also in prediction of whole-brain region-level A-PET standard uptake value ratios (SUVRs) (with the mean square errors as 0.039 and 0.074 for two datasets, respectively). Model interpretability examination also revealed the contributive role of the limbic network. This study demonstrated high feasibility and reproducibility of using low-cost, more accessible magnetic resonance imaging (MRI) to approximate PET-based diagnosis. IEEE

关键词Bioinformatics Biomarkers Classification (of information) Convolution Deposition Diagnosis Forestry Magnetic resonance imaging Mean square error Medical imaging Amyloid β Brain modeling Convolutional networks Functional connectivity Functional magnetic resonance imaging Graph convolutional network High-order High-order functional connectivity Higher-order Image edge detection
URL查看原文
收录类别EI ; SCI
语种英语
资助项目National Natural Science Foundation of China[62131015] ; Guangzhou Science and Technology Plan Project[202102010495] ; National Key Scientific Instrument Development Program[82027808] ; Science and Technology Commission of Shanghai Municipality[21010502600] ; Shanghai Pujiang Program[21PJ1421400] ; Shanghai Pilot Program for Basic Research -Chinese Academy of Science, Shanghai Branch[JCYJ-SHFY-2022-014] ; Shenzhen Science and Technology Program[KCXFZ20211020163408012]
WOS研究方向Computer Science ; Mathematical & Computational Biology ; Medical Informatics
WOS类目Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Medical Informatics
WOS记录号WOS:001129955100021
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20233514640318
EI主题词Brain
EI分类号461.1 Biomedical Engineering ; 461.6 Medicine and Pharmacology ; 461.8.2 Bioinformatics ; 701.2 Magnetism: Basic Concepts and Phenomena ; 716.1 Information Theory and Signal Processing ; 746 Imaging Techniques ; 802.3 Chemical Operations ; 821 Agricultural Equipment and Methods ; Vegetation and Pest Control ; 903.1 Information Sources and Analysis ; 922.2 Mathematical Statistics
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325795
专题生物医学工程学院
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_沈定刚组
生物医学工程学院_公共科研平台_智能医学科研平台
生物医学工程学院_PI研究组_张寒组
通讯作者Zhang, Han; Shen, Dinggang
作者单位
1.Guangzhou Univ, Sch Educ, Guangzhou 510006, Peoples R China
2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
3.Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China
4.Natl Univ Singapore, Dept Biomed Engn, Singapore 119077, Singapore
5.United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai 201807, Peoples R China
6.Shanghai Clin Res & Trial Ctr, Shanghai 200231, Peoples R China
第一作者单位生物医学工程学院
通讯作者单位生物医学工程学院
推荐引用方式
GB/T 7714
Li, Chaolin,Liu, Mianxin,Xia, Jing,et al. Individualized assessment of brain A deposition with fMRI using deep learning[J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,2023,PP(99):1-12.
APA Li, Chaolin.,Liu, Mianxin.,Xia, Jing.,Mei, Lang.,Yang, Qing.,...&Shen, Dinggang.(2023).Individualized assessment of brain A deposition with fMRI using deep learning.IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,PP(99),1-12.
MLA Li, Chaolin,et al."Individualized assessment of brain A deposition with fMRI using deep learning".IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS PP.99(2023):1-12.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Chaolin]的文章
[Liu, Mianxin]的文章
[Xia, Jing]的文章
百度学术
百度学术中相似的文章
[Li, Chaolin]的文章
[Liu, Mianxin]的文章
[Xia, Jing]的文章
必应学术
必应学术中相似的文章
[Li, Chaolin]的文章
[Liu, Mianxin]的文章
[Xia, Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。