消息
×
loading..
KMS
TranSkeleton: Hierarchical Spatial-Temporal Transformer for Skeleton-Based Action Recognition
2023-08-01
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY (IF:8.3[JCR-2023],7.1[5-Year])
ISSN1051-8215
EISSN1558-2205
卷号33期号:8页码:4137-4148
发表状态已发表
DOI10.1109/TCSVT.2023.3240472
摘要

In skeleton-based action recognition, it has been a dominant paradigm to extract motion features with temporal convolution and model spatial correlations with graph convolution. However, it's difficult for temporal convolution to capture long-range dependencies effectively. Meanwhile, commonly used multi-branch graph convolution leads to high complexity. In this paper, we propose TranSkeleton, a powerful Transformer framework which neatly unifies the spatial and temporal modeling of skeleton sequences. For temporal modeling, we propose a novel partition-aggregation temporal Transformer. It works with hierarchical temporal partition and aggregation, and can capture both long-range dependencies and subtle temporal structures effectively. A difference-aware aggregation approach is designed to reduce information loss during temporal aggregation. For spatial modeling, we propose a topology-aware spatial Transformer which utilizes the prior information of human body topology to facilitate spatial correlation modeling. Extensive experiments on two challenging benchmark datasets demonstrate that TranSkeleton notably outperforms the state of the arts.

关键词Skeleton-based action recognition spatial- temporal transformer long-range temporal dependencies
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Key Research and Development Program of China[2018AAA0102802] ; Natural Science Foundation of China[
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:001045167400046
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20230813624074
EI主题词Topology
EI分类号461.3 Biomechanics, Bionics and Biomimetics ; 716.1 Information Theory and Signal Processing ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory
原始文献类型Journal article (JA)
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325787
专题上海科技大学
作者单位
1.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
2.Amap, Alibaba, Beijing, China
推荐引用方式
GB/T 7714
Haowei Liu,Yongcheng Liu,Yuxin Chen,et al. TranSkeleton: Hierarchical Spatial-Temporal Transformer for Skeleton-Based Action Recognition[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2023,33(8):4137-4148.
APA Haowei Liu,Yongcheng Liu,Yuxin Chen,Chunfeng Yuan,Bing Li,&Weiming Hu.(2023).TranSkeleton: Hierarchical Spatial-Temporal Transformer for Skeleton-Based Action Recognition.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,33(8),4137-4148.
MLA Haowei Liu,et al."TranSkeleton: Hierarchical Spatial-Temporal Transformer for Skeleton-Based Action Recognition".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 33.8(2023):4137-4148.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Haowei Liu]的文章
[Yongcheng Liu]的文章
[Yuxin Chen]的文章
百度学术
百度学术中相似的文章
[Haowei Liu]的文章
[Yongcheng Liu]的文章
[Yuxin Chen]的文章
必应学术
必应学术中相似的文章
[Haowei Liu]的文章
[Yongcheng Liu]的文章
[Yuxin Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。