| |||||||
ShanghaiTech University Knowledge Management System
TranSkeleton: Hierarchical Spatial-Temporal Transformer for Skeleton-Based Action Recognition | |
2023-08-01 | |
发表期刊 | IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY (IF:8.3[JCR-2023],7.1[5-Year]) |
ISSN | 1051-8215 |
EISSN | 1558-2205 |
卷号 | 33期号:8页码:4137-4148 |
发表状态 | 已发表 |
DOI | 10.1109/TCSVT.2023.3240472 |
摘要 | In skeleton-based action recognition, it has been a dominant paradigm to extract motion features with temporal convolution and model spatial correlations with graph convolution. However, it's difficult for temporal convolution to capture long-range dependencies effectively. Meanwhile, commonly used multi-branch graph convolution leads to high complexity. In this paper, we propose TranSkeleton, a powerful Transformer framework which neatly unifies the spatial and temporal modeling of skeleton sequences. For temporal modeling, we propose a novel partition-aggregation temporal Transformer. It works with hierarchical temporal partition and aggregation, and can capture both long-range dependencies and subtle temporal structures effectively. A difference-aware aggregation approach is designed to reduce information loss during temporal aggregation. For spatial modeling, we propose a topology-aware spatial Transformer which utilizes the prior information of human body topology to facilitate spatial correlation modeling. Extensive experiments on two challenging benchmark datasets demonstrate that TranSkeleton notably outperforms the state of the arts. |
关键词 | Skeleton-based action recognition spatial- temporal transformer long-range temporal dependencies |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2018AAA0102802] ; Natural Science Foundation of China[ |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Electrical & Electronic |
WOS记录号 | WOS:001045167400046 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20230813624074 |
EI主题词 | Topology |
EI分类号 | 461.3 Biomechanics, Bionics and Biomimetics ; 716.1 Information Theory and Signal Processing ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory |
原始文献类型 | Journal article (JA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/325787 |
专题 | 上海科技大学 |
作者单位 | 1.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China 2.Amap, Alibaba, Beijing, China |
推荐引用方式 GB/T 7714 | Haowei Liu,Yongcheng Liu,Yuxin Chen,et al. TranSkeleton: Hierarchical Spatial-Temporal Transformer for Skeleton-Based Action Recognition[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2023,33(8):4137-4148. |
APA | Haowei Liu,Yongcheng Liu,Yuxin Chen,Chunfeng Yuan,Bing Li,&Weiming Hu.(2023).TranSkeleton: Hierarchical Spatial-Temporal Transformer for Skeleton-Based Action Recognition.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,33(8),4137-4148. |
MLA | Haowei Liu,et al."TranSkeleton: Hierarchical Spatial-Temporal Transformer for Skeleton-Based Action Recognition".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 33.8(2023):4137-4148. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。