消息
×
loading..
Hierarchical Curriculum Learning for No-Reference Image Quality Assessment
2023
发表期刊INTERNATIONAL JOURNAL OF COMPUTER VISION (IF:11.6[JCR-2023],14.5[5-Year])
ISSN0920-5691
EISSN1573-1405
卷号131期号:11页码:3074-3093
发表状态已发表
DOI10.1007/s11263-023-01851-5
摘要

Despite remarkable success has been achieved by convolutional neural networks (CNNs) in no-reference image quality assessment (NR-IQA), there still exist many challenges in improving the performance of IQA for authentically distorted images. An important factor is that the insufficient annotated data limits the training of high-capacity CNNs to accommodate diverse distortions, complicated semantic structures and high-variance quality scores of these images. To address this problem, this paper proposes a hierarchical curriculum learning (HCL) framework for NR-IQA. The main idea of the proposed framework is to leverage the external data to learn the prior knowledge about IQA widely and progressively. Specifically, as a closely-related task with NR-IQA, image restoration is used as the first curriculum to learn the image quality related knowledge (i.e., semantic and distortion information) on massive distorted-reference image pairs. Then multiple lightweight subnetworks are designed to learn human scoring rules on multiple available synthetic IQA datasets independently, and a cross-dataset quality assessment correlation (CQAC) module is proposed to fully explore the similarities and diversities of different scoring rules. Finally, the whole model is fine-tuned on the target authentic IQA dataset to fuse the learned knowledge and adapt to the target data distribution. Experimental results show that our model achieves state-of-the-art performance on multiple standard authentic IQA datasets. Moreover, the generalization of our model is fully validated by the cross-dataset evaluation and the gMAD competition. In addition, extensive analyses prove that the proposed HCL framework is effective in improving the performance of our model. © 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

关键词Convolutional neural networks Curricula Image quality Image reconstruction Knowledge management Semantics Convolutional neural network Cross-dataset quality assessment correlation Hierarchical curriculum learning Image quality assessment Learn+ No-reference image quality assessment No-reference images Performance Prior-knowledge Quality assessment
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Key Research and Development Program of China[2020AAA0106800] ; Natural Science Foundation of China[
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001035491100001
出版者Springer
EI入藏号20233014446104
EI主题词Image enhancement
EI分类号723.5 Computer Applications ; 901.2 Education ; 903.3 Information Retrieval and Use
原始文献类型Article in Press
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/317377
专题信息科学与技术学院
通讯作者Yuan, Chunfeng
作者单位
1.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China
3.OPPO Corp LTD, Shanghai 201615, Peoples R China
4.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
5.People AI Inc, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Wang, Juan,Chen, Zewen,Yuan, Chunfeng,et al. Hierarchical Curriculum Learning for No-Reference Image Quality Assessment[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2023,131(11):3074-3093.
APA Wang, Juan,Chen, Zewen,Yuan, Chunfeng,Li, Bing,Ma, Wentao,&Hu, Weiming.(2023).Hierarchical Curriculum Learning for No-Reference Image Quality Assessment.INTERNATIONAL JOURNAL OF COMPUTER VISION,131(11),3074-3093.
MLA Wang, Juan,et al."Hierarchical Curriculum Learning for No-Reference Image Quality Assessment".INTERNATIONAL JOURNAL OF COMPUTER VISION 131.11(2023):3074-3093.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Juan]的文章
[Chen, Zewen]的文章
[Yuan, Chunfeng]的文章
百度学术
百度学术中相似的文章
[Wang, Juan]的文章
[Chen, Zewen]的文章
[Yuan, Chunfeng]的文章
必应学术
必应学术中相似的文章
[Wang, Juan]的文章
[Chen, Zewen]的文章
[Yuan, Chunfeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。