| |||||||
ShanghaiTech University Knowledge Management System
Analysis and Design of Precision-Scalable Computation Array for Efficient Neural Radiance Field Rendering | |
2023 | |
发表期刊 | IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS (IF:5.2[JCR-2023],4.5[5-Year]) |
ISSN | 1549-8328 |
EISSN | 1558-0806 |
卷号 | 70期号:11页码:1-11 |
发表状态 | 已发表 |
DOI | 10.1109/TCSI.2023.3293534 |
摘要 | Neural Radiance Field (NeRF), a disruptive method for 3D representation and rendering, is extremely popular in the field of computer graphics and computer vision in the past three years. The most distinctive feature of NeRF models is their scene representation property, making it possible to quantize the models according to the complexity of the representing scenes. This paper proposes a novel approach to improve the efficiency of NeRF rendering by adopting precision-scalable computation. We first analyze and validate the idea of scene-dependent quantization for NeRF models. Based on that, we further propose look-up table (LUT) processing element (PE)-based precision-scalable computation unit designs. To evaluate the performance of different precision-scalable computing units, we implement these designs and compare the corresponding area, power, speed and energy efficiency. We also compare the proposed designs with existing approaches as well as the fixed precision approach for NeRF rendering tasks. The comparison results show that energy efficiency can be significantly improved by using precision-scalable computation for NeRF. IEEE |
关键词 | Computing power Energy efficiency Pipelines Rendering (computer graphics) Table lookup Three dimensional computer graphics Three dimensional displays 3-D rendering Complexity theory Computational modelling Energy efficient Field model Neural radiance field Neural rendering Precision-scalable Rendering (computer graphic) Three-dimensional display |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | Shanghai Rising-Star Program[21QC1401400] ; Central Guided Local Science and Technology Foundation of China[YDZX20223100001001] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Electrical & Electronic |
WOS记录号 | WOS:001035828300001 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20233014434850 |
EI主题词 | Computational efficiency |
EI分类号 | 525.2 Energy Conservation ; 619.1 Pipe, Piping and Pipelines ; 722.2 Computer Peripheral Equipment ; 722.4 Digital Computers and Systems ; 723 Computer Software, Data Handling and Applications ; 723.1 Computer Programming ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/317365 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_娄鑫组 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_PI研究组_周平强组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.GGU Technology Company Ltd., Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Kangjie Long,Chaolin Rao,Yunxiang He,et al. Analysis and Design of Precision-Scalable Computation Array for Efficient Neural Radiance Field Rendering[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS,2023,70(11):1-11. |
APA | Kangjie Long.,Chaolin Rao.,Yunxiang He.,Zhechen Yuan.,Pingqiang Zhou.,...&Xin Lou.(2023).Analysis and Design of Precision-Scalable Computation Array for Efficient Neural Radiance Field Rendering.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS,70(11),1-11. |
MLA | Kangjie Long,et al."Analysis and Design of Precision-Scalable Computation Array for Efficient Neural Radiance Field Rendering".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 70.11(2023):1-11. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。