消息
×
loading..
Analysis and Design of Precision-Scalable Computation Array for Efficient Neural Radiance Field Rendering
2023
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS (IF:5.2[JCR-2023],4.5[5-Year])
ISSN1549-8328
EISSN1558-0806
卷号70期号:11页码:1-11
发表状态已发表
DOI10.1109/TCSI.2023.3293534
摘要

Neural Radiance Field (NeRF), a disruptive method for 3D representation and rendering, is extremely popular in the field of computer graphics and computer vision in the past three years. The most distinctive feature of NeRF models is their scene representation property, making it possible to quantize the models according to the complexity of the representing scenes. This paper proposes a novel approach to improve the efficiency of NeRF rendering by adopting precision-scalable computation. We first analyze and validate the idea of scene-dependent quantization for NeRF models. Based on that, we further propose look-up table (LUT) processing element (PE)-based precision-scalable computation unit designs. To evaluate the performance of different precision-scalable computing units, we implement these designs and compare the corresponding area, power, speed and energy efficiency. We also compare the proposed designs with existing approaches as well as the fixed precision approach for NeRF rendering tasks. The comparison results show that energy efficiency can be significantly improved by using precision-scalable computation for NeRF. IEEE

关键词Computing power Energy efficiency Pipelines Rendering (computer graphics) Table lookup Three dimensional computer graphics Three dimensional displays 3-D rendering Complexity theory Computational modelling Energy efficient Field model Neural radiance field Neural rendering Precision-scalable Rendering (computer graphic) Three-dimensional display
URL查看原文
收录类别SCI ; EI
语种英语
资助项目Shanghai Rising-Star Program[21QC1401400] ; Central Guided Local Science and Technology Foundation of China[YDZX20223100001001]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:001035828300001
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20233014434850
EI主题词Computational efficiency
EI分类号525.2 Energy Conservation ; 619.1 Pipe, Piping and Pipelines ; 722.2 Computer Peripheral Equipment ; 722.4 Digital Computers and Systems ; 723 Computer Software, Data Handling and Applications ; 723.1 Computer Programming ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/317365
专题信息科学与技术学院
信息科学与技术学院_PI研究组_娄鑫组
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_PI研究组_周平强组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.GGU Technology Company Ltd., Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Kangjie Long,Chaolin Rao,Yunxiang He,et al. Analysis and Design of Precision-Scalable Computation Array for Efficient Neural Radiance Field Rendering[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS,2023,70(11):1-11.
APA Kangjie Long.,Chaolin Rao.,Yunxiang He.,Zhechen Yuan.,Pingqiang Zhou.,...&Xin Lou.(2023).Analysis and Design of Precision-Scalable Computation Array for Efficient Neural Radiance Field Rendering.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS,70(11),1-11.
MLA Kangjie Long,et al."Analysis and Design of Precision-Scalable Computation Array for Efficient Neural Radiance Field Rendering".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 70.11(2023):1-11.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Kangjie Long]的文章
[Chaolin Rao]的文章
[Yunxiang He]的文章
百度学术
百度学术中相似的文章
[Kangjie Long]的文章
[Chaolin Rao]的文章
[Yunxiang He]的文章
必应学术
必应学术中相似的文章
[Kangjie Long]的文章
[Chaolin Rao]的文章
[Yunxiang He]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。