| |||||||
ShanghaiTech University Knowledge Management System
Stochastic Exceptional Points for Noise-Assisted Sensing | |
2023-06-02 | |
发表期刊 | PHYSICAL REVIEW LETTERS (IF:8.1[JCR-2023],8.3[5-Year]) |
ISSN | 0031-9007 |
EISSN | 1079-7114 |
卷号 | 130期号:22 |
发表状态 | 已发表 |
DOI | 10.1103/PhysRevLett.130.227201 |
摘要 | Noise is a fundamental challenge for sensors deployed in daily environments for ambient sensing, health monitoring, and wireless networking. Current strategies for noise mitigation rely primarily on reducing or removing noise. Here, we introduce stochastic exceptional points and show the utility to reverse the detrimental effect of noise. The stochastic process theory illustrates that the stochastic exceptional points manifest as fluctuating sensory thresholds that give rise to stochastic resonance, a counterintuitive phenomenon in which the added noise increases the system's ability to detect weak signals. Demonstrations using a wearable wireless sensor show that the stochastic exceptional points lead to more accurate tracking of a person's vital signs during exercise. Our results may lead to a distinct class of sensors that overcome and are enhanced by ambient noise for applications ranging from healthcare to the internet of things. |
关键词 | Magnetic resonance Stochastic systems Wearable sensors 'current Ambient sensing Effect of noise Exceptional points Health monitoring Noise mitigation Reducing noise Removing noise Stochastics Wireless networking |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Research Foundation Singapore[NRFF2017-07] ; Ministry of Education of Singapore[MOE2016-T3-1-004] ; Key Research and Development Program of the Ministry of Science and Technology[2022YFA1405200] ; National Natural Science Foundation of China (NNSFC)[ |
WOS研究方向 | Physics |
WOS类目 | Physics, Multidisciplinary |
WOS记录号 | WOS:001012613600001 |
出版者 | AMER PHYSICAL SOC |
EI入藏号 | 20232514252919 |
EI主题词 | Random processes |
EI分类号 | 701.2 Magnetism: Basic Concepts and Phenomena ; 731.1 Control Systems ; 922.1 Probability Theory ; 961 Systems Science |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/317181 |
专题 | 生物医学工程学院 生物医学工程学院_PI研究组_熊泽组 |
通讯作者 | Ho, John S.; Qiu, Cheng-Wei |
作者单位 | 1.Natl Univ Singapore, Dept Elect & Comp Engn, Singapore City 117583, Singapore 2.ShanghaiTech Univ, Sch Biomed Engn, Wireless & Smart Bioelect Lab, Shanghai 201210, Peoples R China 3.Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Physiol, Singapore City 117593, Singapore 4.Hunan Normal Univ, Sch Phys & Elect, Changsha 410081, Hunan, Peoples R China 5.Zhejiang Univ, Interdisciplinary Ctr Quantum Informat, Hangzhou Global Sci & Technol Innovat Ctr, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China 6.Zhejiang Univ, Electromagnet Acad Zhejiang Univ, Int Joint Innovat Ctr, Key Lab Adv Micro Nano Elect Devices & Smart Syst, Haining 314400, Peoples R China 7.Natl Univ Singapore, Heat Resilience & Performance Ctr, Yong Loo Lin Sch Med, Singapore City 119228, Singapore 8.Natl Univ Singapore, Yong Loo Lin Sch Med, Human Potential Translat Res Programme, Singapore City 119228, Singapore |
推荐引用方式 GB/T 7714 | Li, Zhipeng,Li, Chenhui,Xiong, Ze,et al. Stochastic Exceptional Points for Noise-Assisted Sensing[J]. PHYSICAL REVIEW LETTERS,2023,130(22). |
APA | Li, Zhipeng.,Li, Chenhui.,Xiong, Ze.,Xu, Guoqiang.,Wang, Yongtai Raymond.,...&Qiu, Cheng-Wei.(2023).Stochastic Exceptional Points for Noise-Assisted Sensing.PHYSICAL REVIEW LETTERS,130(22). |
MLA | Li, Zhipeng,et al."Stochastic Exceptional Points for Noise-Assisted Sensing".PHYSICAL REVIEW LETTERS 130.22(2023). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。