消息
×
loading..
Fully relativistic first-principles quantum transport simulation of noncollinear spin transfer and spin Hall current
2023-05-15
发表期刊PHYSICAL REVIEW B (IF:3.2[JCR-2023],3.3[5-Year])
ISSN2469-9950
EISSN2469-9969
卷号107期号:19
发表状态已发表
DOI10.1103/PhysRevB.107.195431
摘要

In this work, we report the fully relativistic (FR) first-principles quantum transport simulation of noncollinear spin transfer and spin Hall current in the device structure. In this method, the noncollinear FR exact muffin-tin orbital method is combined with Keldysh's nonequilibrium Green's function approach and mean-field theory to account for the multiple disorder scattering. We adopt the Bargmann-Wigner polarization operator to define the appropriate FR spin current so that the current-induced spin transfer, in the noncollinear magnetic device or due to the spin Hall effect, can be studied from first principles. As applications, we calculate the spin transfer torque in noncollinear spin valves Co/Cu/FM/Cu (FM = Co, Ni0.8Fe0.2) and spin Hall angles in various Pt1-xYx [Y = vacancy (Va), Au, Ag, Pd] alloys. We find that our FR results agree well with previous theoretical simulations and experimental measurements. Moreover, it is found that the applied finite bias can significantly enhance the spin Hall angle in Pt1-xVax, and PtAg alloy presents a much higher spin Hall angle than that of PtAu and PtPd alloys. Our implementation of the FR method provides an important first-principles tool for studying various nonequilibrium spin phenomena and the associated relativistic effects in realistic device structures with atomic disorders, including both current-induced spin transfer and spin-orbit torques. © 2023 American Physical Society.

关键词Band structure Cobalt alloys Copper alloys Gold alloys Iron alloys Palladium alloys Platinum alloys Quantum chemistry Silver alloys Spin Hall effect Exact muffin-tin orbitals methods First principles First-principles quantum transports Non equilibrium Noncollinear Quantum transport simulations Relativistics Spin Hall currents Spin transfer Spin-spin
URL查看原文
收录类别SCI ; EI
语种英语
资助项目NSFC[
WOS研究方向Materials Science ; Physics
WOS类目Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号WOS:001003891500006
出版者American Physical Society
EI入藏号20232314203832
EI主题词Binary alloys
EI分类号544.2 Copper Alloys ; 545.2 Iron Alloys ; 547.1 Precious Metals ; 549.3 Nonferrous Metals and Alloys excluding Alkali and Alkaline Earth Metals ; 701.2 Magnetism: Basic Concepts and Phenomena ; 801.4 Physical Chemistry ; 933 Solid State Physics
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/312333
专题物质科学与技术学院
物质科学与技术学院_PI研究组_柯友启组
物质科学与技术学院_博士生
物质科学与技术学院_PI研究组_刘健鹏组
通讯作者Ke, Youqi
作者单位
1.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
5.Southeast Univ, Dept Phys, Nanjing 100193, Peoples R China
第一作者单位物质科学与技术学院
通讯作者单位物质科学与技术学院
第一作者的第一单位物质科学与技术学院
推荐引用方式
GB/T 7714
Chen, Zhiyi,Zhang, Qingyun,Yuan, Zhe,et al. Fully relativistic first-principles quantum transport simulation of noncollinear spin transfer and spin Hall current[J]. PHYSICAL REVIEW B,2023,107(19).
APA Chen, Zhiyi,Zhang, Qingyun,Yuan, Zhe,Liu, Jianpeng,Xia, Ke,&Ke, Youqi.(2023).Fully relativistic first-principles quantum transport simulation of noncollinear spin transfer and spin Hall current.PHYSICAL REVIEW B,107(19).
MLA Chen, Zhiyi,et al."Fully relativistic first-principles quantum transport simulation of noncollinear spin transfer and spin Hall current".PHYSICAL REVIEW B 107.19(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Zhiyi]的文章
[Zhang, Qingyun]的文章
[Yuan, Zhe]的文章
百度学术
百度学术中相似的文章
[Chen, Zhiyi]的文章
[Zhang, Qingyun]的文章
[Yuan, Zhe]的文章
必应学术
必应学术中相似的文章
[Chen, Zhiyi]的文章
[Zhang, Qingyun]的文章
[Yuan, Zhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。