Task-oriented Explainable Semantic Communications
2023
发表期刊IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year])
ISSN1536-1276
EISSN1558-2248
卷号PP期号:99页码:1-1
发表状态已发表
DOI10.1109/TWC.2023.3269444
摘要Semantic communications utilize the transceiver computing resources to alleviate scarce transmission resources, such as bandwidth and energy. Although the conventional deep learning (DL) based designs may achieve certain transmission efficiency, the uninterpretability issue of extracted features is the major challenge in the development of semantic communications. In this paper, we propose an explainable and robust semantic communication framework by incorporating the well-established bit-level communication system, which not only extracts and disentangles features into independent and semantically interpretable features, but also only selects task-relevant features for transmission, instead of all extracted features. Based on this framework, we derive the optimal input for rate-distortion-perception theory, and derive both lower and upper bounds on the semantic channel capacity. Furthermore, based on the -variational autoencoder (-VAE), we propose a practical explainable semantic communication system design, which simultaneously achieves semantic features selection and is robust against semantic channel noise. We further design a real-time wireless mobile semantic communication proof-of-concept prototype. Our simulations and experiments demonstrate that our proposed explainable semantic communications system can significantly improve transmission efficiency, and also verify the effectiveness of our proposed robust semantic transmission scheme. IEEE
关键词Computation theory Data mining Deep learning Electric distortion Feature extraction Radio transceivers Signal distortion Communication prototypes Communications systems Explainable semantic communication Features extraction Features selection Semantic communication Semantic communication prototype Task analysis Wireless communications
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20232114130238
EI主题词Semantics
EI分类号461.4 Ergonomics and Human Factors Engineering ; 701.1 Electricity: Basic Concepts and Phenomena ; 716.1 Information Theory and Signal Processing ; 716.3 Radio Systems and Equipment ; 721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory ; 723.2 Data Processing and Image Processing
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/306472
专题信息科学与技术学院
信息科学与技术学院_PI研究组_吴幼龙组
信息科学与技术学院_PI研究组_石远明组
作者单位
1.Peng Cheng Laboratory, Shenzhen, China
2.School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
3.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
4.Shen zhen Research Institute of Big Data, Shenzhen, Guangdong, China
5.School of Artificial Intelligence, Xidian University, Xi’an, Shaanxi, China
6.Electrical and Computer Engineering Department, University of Texas at Dallas, Dallas, TX, USA
推荐引用方式
GB/T 7714
Shuai Ma,Weining Qiao,Youlong Wu,et al. Task-oriented Explainable Semantic Communications[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2023,PP(99):1-1.
APA Shuai Ma.,Weining Qiao.,Youlong Wu.,Hang Li.,Guangming Shi.,...&Naofal Al-Dhahir.(2023).Task-oriented Explainable Semantic Communications.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,PP(99),1-1.
MLA Shuai Ma,et al."Task-oriented Explainable Semantic Communications".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS PP.99(2023):1-1.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shuai Ma]的文章
[Weining Qiao]的文章
[Youlong Wu]的文章
百度学术
百度学术中相似的文章
[Shuai Ma]的文章
[Weining Qiao]的文章
[Youlong Wu]的文章
必应学术
必应学术中相似的文章
[Shuai Ma]的文章
[Weining Qiao]的文章
[Youlong Wu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TWC.2023.3269444.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。