Multimodal Representation Learning for Blastocyst Assessment
2023
会议录名称IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING
ISSN1945-7928
卷号2023-April
发表状态已发表
DOI10.1109/ISBI53787.2023.10230468
摘要Blastocyst selection based on morphology grading is crucial in in vitro fertilization (IVF) treatment. Several research studies based on convolutional neural networks (CNNs) have been reported to select the most viable blastocyst automatically. In this paper, we propose a multimodal representation learning framework in which the text description is firstly streamed as a complementary supervision signal to enrich the visual information. Moreover, we redefine the blastocyst assessment problem to an image-text retrieval task to solve the data imbalance. The experimental results show that the performance metrics, e.g., accuracy, outperform the unimodal classification (+1.5%) and image retrieval counterparts (+1.2%), which demonstrates our proposed model's effectiveness. © 2023 IEEE.
会议录编者/会议主办者Flywheel ; Kitware ; Siemens Healthineers ; UCLouvain
关键词Blastocyst Assessment Multimodal Representation Learning Image-text Retrieval Visual Transformer
会议名称20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Cartagena, Colombia
会议日期18-21 April 2023
URL查看原文
收录类别EI ; CPCI-S
语种英语
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001062050500146
出版者IEEE Computer Society
EI入藏号20233914806266
EI主题词Grading
EISSN1945-8452
EI分类号723.5 Computer Applications ; 741.2 Vision
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/305053
专题创意与艺术学院
信息科学与技术学院_硕士生
创意与艺术学院_PI研究组(P)_谢广平组
创意与艺术学院_PI研究组(P)_武颖娜组
通讯作者Ni, Na; Tong, Guoqing
作者单位
1.ShanghaiTech Univ, Sch Creat & Art, Ctr Adapt Syst Engn, Shanghai, Peoples R China
2.Xi An Jiao Tong Univ, Dept Reprod Med, Affiliated Hosp 1, Xian, Peoples R China
3.Shuguang Hosp, Reprod Med Ctr, Shanghai, Peoples R China
第一作者单位创意与艺术学院
通讯作者单位创意与艺术学院
第一作者的第一单位创意与艺术学院
推荐引用方式
GB/T 7714
Wang, Youcheng,Zheng, Zhe,Ni, Na,et al. Multimodal Representation Learning for Blastocyst Assessment[C]//Flywheel, Kitware, Siemens Healthineers, UCLouvain. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Youcheng]的文章
[Zheng, Zhe]的文章
[Ni, Na]的文章
百度学术
百度学术中相似的文章
[Wang, Youcheng]的文章
[Zheng, Zhe]的文章
[Ni, Na]的文章
必应学术
必应学术中相似的文章
[Wang, Youcheng]的文章
[Zheng, Zhe]的文章
[Ni, Na]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。