Histopathological auxiliary system for brain tumour (HAS-Bt) based on weakly supervised learning using a WHO CNS5-style pipeline
2023-05-01
发表期刊JOURNAL OF NEURO-ONCOLOGY (IF:3.2[JCR-2023],3.7[5-Year])
ISSN0167-594X
EISSN1573-7373
发表状态已发表
DOI10.1007/s11060-023-04306-6
摘要PurposeClassification and grading of central nervous system (CNS) tumours play a critical role in the clinic. When WHO CNS5 simplifies the histopathology diagnosis and places greater emphasis on molecular pathology, artificial intelligence (AI) has been widely used to meet the increased need for an automatic histopathology scheme that could liberate pathologists from laborious work. This study was to explore the diagnosis scope and practicality of AI.MethodsA one-stop Histopathology Auxiliary System for Brain tumours (HAS-Bt) is introduced based on a pipeline-structured multiple instance learning (pMIL) framework developed with 1,385,163 patches from 1038 hematoxylin and eosin (H&E) slides. The system provides a streamlined service including slide scanning, whole-slide image (WSI) analysis and information management. A logical algorithm is used when molecular profiles are available.ResultsThe pMIL achieved an accuracy of 0.94 in a 9-type classification task on an independent dataset composed of 268 H&E slides. Three auxiliary functions are developed and a built-in decision tree with multiple molecular markers is used to automatically formed integrated diagnosis. The processing efficiency was 443.0 s per slide.ConclusionHAS-Bt shows outstanding performance and provides a novel aid for the integrated neuropathological diagnostic workflow of brain tumours using CNS 5 pipeline.
关键词Neuropathology Histology Deep learning Multiply instance learning Clinical practice
URL查看原文
收录类别SCI
语种英语
资助项目Shanghai Municipal Science and Technology Commision "Science and Technology Innovation Action Plan" Project[22S31905400] ; Shanghai Shenkang Hospital Development Center[SHDC12018114]
WOS研究方向Oncology ; Neurosciences & Neurology
WOS类目Oncology ; Clinical Neurology
WOS记录号WOS:000986316500001
出版者SPRINGER
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/305030
专题生物医学工程学院
生物医学工程学院_PI研究组_沈定刚组
通讯作者Jin, Lei; Shen, Dinggang; Wu, Jinsong
作者单位
1.Fudan Univ, Neurol Surg Dept, Glioma Surg Div, Huashan Hosp, Shanghai, Peoples R China
2.Fudan Univ, Natl Ctr Neurol Disorders, Huashan Hosp, Shanghai, Peoples R China
3.Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China
4.Fudan Univ, Dept Pathol, Huashan Hosp, Shanghai, Peoples R China
5.Wuhan Zhongji Biotechnol Co Ltd, Wuhan, Peoples R China
6.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
7.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China
通讯作者单位生物医学工程学院
推荐引用方式
GB/T 7714
Ma, Yixin,Shi, Feng,Sun, Tianyang,et al. Histopathological auxiliary system for brain tumour (HAS-Bt) based on weakly supervised learning using a WHO CNS5-style pipeline[J]. JOURNAL OF NEURO-ONCOLOGY,2023.
APA Ma, Yixin.,Shi, Feng.,Sun, Tianyang.,Chen, Hong.,Cheng, Haixia.,...&Wu, Jinsong.(2023).Histopathological auxiliary system for brain tumour (HAS-Bt) based on weakly supervised learning using a WHO CNS5-style pipeline.JOURNAL OF NEURO-ONCOLOGY.
MLA Ma, Yixin,et al."Histopathological auxiliary system for brain tumour (HAS-Bt) based on weakly supervised learning using a WHO CNS5-style pipeline".JOURNAL OF NEURO-ONCOLOGY (2023).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ma, Yixin]的文章
[Shi, Feng]的文章
[Sun, Tianyang]的文章
百度学术
百度学术中相似的文章
[Ma, Yixin]的文章
[Shi, Feng]的文章
[Sun, Tianyang]的文章
必应学术
必应学术中相似的文章
[Ma, Yixin]的文章
[Shi, Feng]的文章
[Sun, Tianyang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1007@s11060-023-04306-6.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。